
SOFTWARE DEVELOPMENT KIT
End-to-end Development Environment Setup Solution

MODULE DESCRIPTION

1/8

FRIWO SDK

2/8

FRIWO SDK

1. Desired Torque (TRQ_DES) Module
Function to calculate and define the desired or requested torque from the user to the motor.

2. CAN Module
Communication module that provides customized CAN-Bus Messaging. CAN Bus is industry standard the
leading automotive real-time communication protocol.

1. DESIRED TORQUE (TRQ_DES)
1.1 DESCRIPTION

This module is the first stage of torque calculation. It utilizes the mapped input signals of throttle and brake
and calculates the torque request which is desired by the driver. In the easiest case, this can be done by simply
adding the signals up in order to get a resulting torque, depending on the operation mode. For special driving
maneuvers, e.g. hill assistance, additional motor related information such as the rotor speed can be used to
prioritize either the throttle or the brake input.

Additionally, different maximum torque gradients could be represented for each ride mode, which evoke the dri-
ver’s feeling to be more comfy or rather sporty in acceleration. After the desired torque has been calculated, the
output of this module is directly handed over to the torque limitation (TRQ LIM) and torque strategy (TRQ STR)
modules until the torque will finally be generated by the current controllers.

1.2 CONFIGURATION

The following table lists all configuration parameters for TRQ DES module:

If the custom module has been successfully implemented in firmware with FRIWO SDK, the module can be execu-
ted by setting the configuration parameter SDK_C_TRQDES_Custom_Module_Enable to 1 with FRIWO Enable Tool
Application. When setting this configuration parameter to 0, the default module is executed. Because of security
reasons, the switch between default and custom module is only possible during standstill of the motor connected to
the control unit.

OVERVIEW

Function Datatype Min Max Description

SDK_C_TRQDES_Custom_Module_Enable UInt8 0 1 Switch between FRIWO default
TRQ_DES module and custom module.

0: default
1: custom

Note: Switching is only possible, if
motor connected to MCU is in stand-
still.

Default value: 0

Function Description

trqdesApi_Get_VariableName Get data from variable VariableName used in firmware,
e.g. trqdesApi_Get_APP_Disp_Ride_Mode
See Variable Description for a full list of available Get-variables.

trqdesApi_Set_VariableName Set firmware variable VariableName with values from custom module,
e.g. canApi_Set_TRQ_DES_Trq_Req_Rel
See Variable Description for a full list of available Set-variables.

3/8

FRIWO SDK

Function Description

canApi_UserInitCallBack User callback, which is called when the base firmware initializes the
CAN peripheral. In this callback, the CAN buffer must be initialized and
should be cleared. All required CAN filters for incoming messages should
be set in this function. The developer can initialize his module code here.

canApi_UserPeriodicCallBack This callback is called by the base firmware each millisecond. The deve-
veloper must read the input buffer and forward received data to the
firmware using the API functions. The complexity of this function should
be kept as low as possible, as it runs in a high priority interrupt.

canApi_ClearTransmitBuffer Remove all entries from the transceive buffer.

canApi_ClearReceiveBuffer Remove all entries from the receive buffer.

canApi_SendMessage Put a custom CAN frame into the transceive buffer. The base firmware
will handle the transmission.

canApi_ReceiveMessage Receive an incoming message.

canApi_Filter…. Filter functions to setup a filter bank for incoming messages.

canApi_FilterDeactivateFilterBank Deactivate an active setting on a specific filter bank.

1.3 IMPORTANT API FUNCTIONS

2. CAN
2.1 DESCRIPTION

This module is the interface between the motor controller firmware and the CAN bus. It processes the in-
coming CAN messages and provides the received information to the firmware. Information from the firm-
ware can be cyclically placed on the bus in the form of CAN messages. With this module, the developer can
specify the structure of the messages on the bus themselves and use their own messages and protocols.

The API of this module offers buffers for sending and receiving messages. These buffers can be read and written by
thedeveloperusingtheassociatedAPIfunctions.Thebasefirmware independentlytakescareoftheCANperipheral.

Further API function and parameter descriptions can be found in the canApi.h header file.

2.2 IMPORTANT API FUNCTIONS /1

https://friwo.link/md/variables

4/8

FRIWO SDK

2.2 IMPORTANT API FUNCTIONS /2

2.3 BUFFER MODEL DESCRIPTION

The CAN module has configurable input and output buffers. The developer can write any CAN frames into the
output buffer and read incoming messages from the input buffer. For this purpose, corresponding API functions
are made available via the canApi. The base firmware takes care of sending and receiving the frames via the CAN
peripheral. When starting the firmware, the developer must configure the buffers via the buffer setup function.

With the function parameters of the setup function, the developer can configure the behaviour of the buffers.
The table below shows the available configurations:

Function Description

canApi_Get_VariableName Get data from variable VariableName used in firmware to be transceived
via CAN bus, e.g. canApi_Get_INFO_Voltage_DC
See Variable Description for a full list of available Get-variables.

canApi_Set_VariableName Set firmware variable VariableName with data of received CAN frame,
e.g. canApi_Set_CAN_EXT_Ride_Mode
See Variable Description for a full list of available Set-variables.

canApi_Set_VariableName_Timeout Set timeout flag for corresponding firmware variable VariableName
to handle CAN signal timeouts,
e.g. canApi_Set_CAN_EXT_Ride_Mode_Timeout
See Variable Description for a full list of available Timeout-flags.

https://friwo.link/md/variables

Buffer Type Description

Ringbuffer Standard ringbuffer FIFO implementation. This implementation is
strongly recommended if the developer intents to use a higher protocol
with segmented block transfer (e.g. ISO 15765-2)

Prioritybuffer Queue Every message has a Priority property. The message with the highest
priority in the buffer is transmitted first. The priority of all messages
that could not be sent in a cycle is increased by ‚1‘ at the end of each
cycle. With this implementation, the user can prioritize important
messages in his system. Incoming messages are not affected by
prioritization (always priority ‚‘1‘).

Prioritybuffer Replace This implementation works just like the „Priority Queue“ option with the
difference that an existing message in a buffer is replaced if the new
message for the buffer has the same CAN identifier. This is used to
update existing data if it gets irrelevant if a new one is available (e.g.
sensor data like temperatures). The priority value of the existing mes-
sage is kept if it’s priority is higher.

5/8

FRIWO SDK

2.4 CAN BUS FILTER FUNCTIONALITY

The CAN periphery supports the filtering of incoming CAN frames in hardware. For this purpose, 27 filter banks
are available to the developer. With these filters, either individual identifiers can be selectively allowed through
(ListMode) or entire ranges can be permitted (MaskMode).

Each individual filter bank can hold up to four individual standard identifiers in ListMode and two identifiers with
their corresponding masks in MaskMode. Consequently, a filter bank can hold two extended identifiers in List-
Mode and one extended identifier in MaskMode.

In MaskMode, every incoming CAN frame is accepted whose identifier at the masked positions (logic 1 on corre-
sponding bit position) is identical to the identifier of the filter.

The use of filters is strongly recommended to avoid overloading the CAN periphery and the microcontroller with
irrelevant messages. A brief description for each filter setting function can be found in the canApi.h header file.

2.5 PROCEDURE FOR THE DEVELOPMENT OF AN INDIVIDUAL CAN BUS IMPLEMENTATION

1. Implement canApi_UserInitCallBack() function
1.1. Init buffers with canApi_SetupBuffer(…) function
1.2. Clear both buffers
1.3. Setup required CAN filters (see filter function descriptions)

2. Implement canApi_UserPeriodicCallBack() function
2.1. Read incoming messages from the input buffer with canApi_ReceiveMessage(…) function
2.2. Handle received messages (parse data and formward to firmware using

canApi_Set_ functions
2.3. Handle message timeouts set timeouts using the corresponding

canApi_Set_..._Timeout functions
2.4. Send periodic messages in desired interval, fill payload with data from the firmware using the

canApi_Get_ functions

3. Define configurable Parameters to control the behaviour of your implementation
using the Enable Tool. (optional)
3.1. E.g. create parameters to control message sending interval and timeout values
3.2. E.g. use CAN bus and Enable Tool to create a logging functionality for external bus participants

6/8

FRIWO SDK

2.6 TIMEOUT HANDLING

The timeout flags of the corresponding signals can be set by the function canApi_Set_VariableName_Timeout.
All timeouts critical for firmware execution are merged to a 32 bit-codeword within the errorhandler. A list of
these timeout flags with their corresponding 32 bit decimal and hex value as codeword implementation is shown
in the table below:

Timeout flag Codeword Usage
Decimal Hex

CAN_EXT_State_Request_Timeout 1 0x00000001 default

CAN_EXT_Torque_Request_Timeout 2 0x00000002 default

CAN_EXT_Reverse_Gear_Signal_Channel_Timeout 4 0x00000004 default

CAN_EXT_Alive_Counter_Timeout 8 0x00000008 default

CAN_EXT_ROC_Start_Timeout 16 0x00000010 default

CAN_EXT_Rotor_Speed_Max_Timeout 32 0x00000020 default

CAN_EXT_Skip_Signal_Checks_Timeout 64 0x00000040 default

CAN_EXT_Ride_Mode_Timeout 128 0x00000080 default

CAN_Immo_Unlock_Request_Timeout 256 0x00000100 default

CAN_BMS_SOC_Timeout 512 0x00000200 default

CAN_BMS_Fullcharge_Capacity_Timeout 1024 0x00000400 default

CAN_BMS_Max_Charge_Timeout 2048 0x00000800 default

CAN_BMS_Max_Discharge_Timeout 4096 0x00001000 default

CAN_BMS_Max_Voltage_Timeout 8192 0x00002000 default

CAN_BMS_Min_Voltage_Timeout 16384 0x00004000 default

CAN_BMS_PushButton_SuperLongPress_Ongoing_Timeout 32768 0x00008000 default

CAN_BMS_Pending_Bordnet_Shutdown_Timeout 65536 0x00010000 default

CAN_BMS_Pending_HV_Shutdown_Timeout 131072 0x00020000 default

CAN_Custom_Timeout_Bit27 227 0x08000000 individual

CAN_Custom_Timeout_Bit28 228 0x10000000 individual

CAN_Custom_Timeout_Bit29 229 0x20000000 individual

CAN_Custom_Timeout_Bit30 230 0x40000000 individual

CAN_Custom_Timeout_Bit31 231 0x80000000 individual

The last bits 27 to 31 of the timeout codeword can be set individually, while the rest is already reserved for de-
fault timeout flags.

7/8

FRIWO SDK

Function Datatype Min Max Description

SDK_C_CAN_Custom_Timeout_Enable UInt8 0 1 Switch between FRIWO default timeout
handling and custom timeout handling.
0: default, 1: custom

Default value: 0

ERR_C_CAN_Timeout_Enable Float32 0 1 If set to 1, a non-zero timeout error-
code ERR_CAN_Timeout_Errorcode
directly leads to a system error and
powerstage shutdown.

Default value: 1

ERR_C_SDK_CAN_Timeout_Errorcode_Filter UInt32 0 232-1 This parameter serves as bitwise filter
mask for the 32bit-codeword of time-
outs, resulting in the errorcode
ERR_CAN_Timeout_Errorcode. If a
filter-bit is 0, the codeword-bit gets
passed unchanged.

Filter value is applied if SDK_C_CAN_
custom_Timeout_Enable is set to 1.

Default value: 0

ERR_C_SDK_CAN_Timeout_Warningcode_Filter UInt32 0 232-1 This parameter serves as bitwise filter
mask for the 32bit-codeword of time-
outs, resulting in the warningcode. If a
filter-bit is 0, the codeword-bit gets
passed unchanged.

Filter value is applied if SDK_C_CAN_
custom_Timeout_Enable is set to 1.

Default value: 0

ERR_E_CAN_Timeout Float32 0 1 Error flag for system shutdown. Is only
set, if ERR_C_CAN_Timeout_Enable is
set to 1 and ERR_CAN_Timeout_Error-
code is non-zero.

The 32 bit-codeword of timeouts is masked bitwise by an errorcode-filter and a warningcode-filter each resul-
ting in an errorcode (ERR_CAN_Timeout_Errorcode) and a warningcode (ERR_CAN_Timeout_Warningcode).
The difference between both codes is that a non-zero errorcode leads to a system error and powerstage shut-
down, if the parameter ERR_C_CAN_Timeout_Enable is set to 1. In contrast, the warningcode only displays
timeouts of specific signals and has no further impact.

Note: Per default, the 32 bit-codeword of timeouts is masked by the constant decimal value of 262140 (0x3FFFC)
for each the errorcode ERR_CAN_Timeout_Errorcode and the warningcode ERR_CAN_Timeout_Warningco-
de. Thus, only the two flags CAN_EXT_State_Request_Timeout and CAN_EXT_Torque_Request_Timeout are
handled. To switch to custom timeout handling, taking care also of other timeouts, the parameter SDK_C_CAN_
custom_Timeout_Enable has to be set to 1.

The following table shows the configuration parameters for CAN timeout handling:

8/8

FRIWO SDK

Function Datatype Min Max Description

ERR_W_CAN_Timeout Float32 0 1 Warning flag; is only set, if
ERR_CAN_Timeout_Warningcode is
non-zero.

ERR_CAN_Timeout_Errorcode UInt32 0 232-1 Errorcode of timeouts after bitwise
filtering by ERR_C_SDK_CAN_
Timeout_Errorcode_Filter

ERR_CAN_Timeout_Warningcode UInt32 0 232-1 Warningcode of timeouts after bitwise
filtering by ERR_C_SDK_CAN_
Timeout_Warningcode_Filter

Feedback

We are working very hard to improve our products and therefore feedback is
indispensable! Please send us your valuable feedback as contact form or via Mail
to feedback@friwo.com

https://friwo.link/md/feedback

