
SOFTWARE DEVELOPMENT KIT
End-to-end Development Environment Setup Solution

APPLICATION GUIDE – HILL ASSIST
Version 2.0

1/20

FRIWO SDK

2/20

FRIWO SDK

The FRIWO SDK enables the user to integrate own functionalities into
a fully developed software environment for FRIWO products.

ABOUT

https://friwo.link/ag/quickstart-guide

This document demonstrates how to implement a Hill
Assist function by creating a customized TRQ_DES-
module. Basically, the Hill Assist prevents the vehic-
le from rolling backwards for a parameterizable time
when starting on hill and releasing the brake pedal.

This guide gives a step-by-step overview of the im-
plementation workflow from project creation to flas-
hing and testing of the generated firmware on hard-

ware. Therefore, it assumes the FRIWO SDK Tool
Environment to be set up already. For a guidance of
the basic setup please refer to our Quickstart Guide.

If you need a detailed description of the variable na-
ming scheme, have a look at the Software Manual.

https://friwo.link/ag/manual

https://friwo.link/ag/mcu

Mechanical braking system must be available with
analog output (0…3.3V), which is connected to the mo-
tor controller Analog Interface 2. Throttle pedal must
be available with analog output (0…3.3V) connected to
the motor controller Analog Interface 1.

SETUP REQUIREMENTS

For wiring information about our Motor Control Unit,
see our MCU data sheet.

3/20

FRIWO SDK

For the Hill Assist application we use the throttle and
brake signals from the analog channels, as well as the
motor rotor speed as input signals to calculate the ac-
tual desired torque.

DESCRIPTION OF HILL ASSIST

The Hill Assist is realized as a state machine which
utilizes three states, illustrated in the following state-
flow chart:

As soon as the torque control is activated, the state
machine enters the state “STATE_INITIAL”. Now it
depends, whether the driver is requesting a positive
torque with brake released or with brake held. In the
first case, the state machine jumps into state “STATE_
NORMAL_ACCELERATION”, where both throttle and
brake are handled equally.

If the driver wants to accelerate on hill, holding the
brake while the motor rotor speed is below the spe-
cified threshold ThrottlePrio_MaxRotorSpeed, the
state machine jumps into the state “STATE_THROTT-
LE_PRIO”. Here the throttle signal gets prioritized over
the brake signal, so the requested torque is as high
making acceleration on hill possible. The state ma-
chine remains in this state for a specified time value
ThrottlePrio_Time.

As soon as the counter ctrHillAssist reaches zero,
meaning that the specified time has elapsed, the state
machine jumps into state “STATE_NORMAL_AC-
CELERATION”. If the time hasn’t elapsed yet when
throttle is released again, however, the state machine
jumps back from state “STATE_THROTTLE_PRIO” to
“STATE_INITIAL”.

Remaining in state “STATE_NORMAL_ACCELERATI-
ON”, the state machine enters state “STATE_INITIAL”,
if throttle and brake both equal to zero and the rotor
speed is below the specified threshold.

4/20

FRIWO SDK

THE BASIC WORKFLOW OF THE FRIWO SDK

To get the necessary source files for the
TRQ_DES-module a new project is created
using the following steps:

• Open FRIWO SDK
• In main view press Select Project
• Name the project (i.e. HillAssist)
• Choose your workspace folder path (default: C:\

Users\USERNAME\Documents\SDK_Workspace)
• Choose framework MCU FRIWO Standard V1.1
• Press Create

CREATE A NEW PROJECT

Next, we define the module to be
customized.

• In main view press Select Module
• Select module TRQ_DES to be customized
• Confirm the dialog window
• Press OK

A new project folder is created in your workspa-
ce folder. The project’s subfolder .\module_TRQ_
DES contains the c-files TRQ_DES_custom.c and
TRQ_DES_custom.h, as well as a variable description
file TRQ_DES_variables.xml and the header file trqde-
sApi.h.

FRIWO SDK

KEIL IDE

FRIWO SDK

FRIWO Enable Tool

We start, by creating a new project inside the FRIWO
SDK. All necessary basic software gets pulled from the
FRIWO Servers and made ready for usage.

In order to write your software, you need an IDE. We re-
commend Keil IDE or Visual Studio Professional.

After the software is written inside the IDE, we switch
back to the FRIWO SDK. We start the compilation pro-
cess and receive the customized firmware inside our
workspace folder.

With the FRIWO Enable Tool, we can flash the customi-
zed firmware on the motor controller.

5/20

FRIWO SDK

Before we start programming the Hill Assist functionality, there has to be done some preparations of the source
files of the TRQ_DES-module. This is done by using the ANSI C IDE of your choice. The following procedure is
explained using Keil μVision4 IDE.

For the first step we are having a look at the header-file trqdesApi.h.

• Open Keil μVision4 IDE
• Select File->Open
• Navigate to the project’s workspace and there inside the subfolder .\module_TRQ_DES
• Select trqdesApi.h
• Press Open

PREPARATION

Note: The header-file should not be changed.

The header-file trqdesApi.h describes the API of your custom module to the rest of the application software.
It lists some type definitions as well as all Get-/Set-Functions, which can be used to access defined variables:

/*~~~*/
/* PUBLIC FUNCTION PROTOTYPES */
/*~~~*/

/* Function prototypes to GET variables from other modules */
Float32 trqdesApi_Get_APP_Brake_Signal_Channel(void);
Float32 trqdesApi_Get_APP_Reverse_Gear_Signal_Channel(void);
Float32 trqdesApi_Get_APP_Throttle_Signal_Channel(void);
Float32 trqdesApi_Get_AIN1_Throttle(void);
Float32 trqdesApi_Get_AIN2_Throttle(void);
Float32 trqdesApi_Get_CAN_EXT_Reverse_Gear(void);
Float32 trqdesApi_Get_CAN_EXT_Torque_Request(void);
Float32 trqdesApi_Get_DIN_DIN1_Signal(void);
Float32 trqdesApi_Get_DIN_DIN2_Signal(void);
Float32 trqdesApi_Get_PWMI_Throttle(void);
Float32 trqdesApi_Get_INFO_Rotor_Speed(void);
Float32 trqdesApi_Get_APP_Disp_Ride_Mode(void);
Float32 trqdesApi_Get_SM_OUT_SYS_Trq_Control(void);
Float32 trqdesApi_Get_IHS_Vibration_Detected(void);

/* Function prototypes to SET variables for other modules */
void trqdesApi_Set_TRQ_DES_Driver_Throttle(Float32);
void trqdesApi_Set_TRQ_DES_Driver_Brake(Float32);
void trqdesApi_Set_TRQ_DES_Driver_Reverse_Gear(Float32);
void trqdesApi_Set_TRQ_DES_Trq_Req_Rel(Float32);

6/20

FRIWO SDK

In order to get the analog signal for throttle calculation, the following syntax has to be used in your custom code:

Similar procedure has to be done when an interface variable is set:

Next, we open the c-file TRQ_DES_custom.c:

• Select File->Open
• Navigate to the project’s subfolder .\module_TRQ_DES
• Select TRQ_DES_custom.c
• Press Open

The file template is divided into code sections and already contains all basic include-Statements as well as the
public function TRQ_DES_custom() which are needed to be integrated into the application software framework.

As described before, the Hill Assist will be implemented using the three states STATE_INITIAL, STATE_NOR-
MAL_ACCELERATION and STATE_THROTTLE_PRIO. Therefore, in section /* PRIVATE TYPEDEF */ we define the
datatype hillAssistState_TypeDef as enumeration including the mentioned states:

userVariable = trqdesApi_Get_AIN1_Throttle();

trqdesApi_Set_TRQ_DES_Driver_Throttle(userVariable);

/*~~~*/
/* PRIVATE TYPEDEF */
/*~~~*/

/**
* @brief Dene dierent states for hill-assist state machine as enumeration.
*/

typedef enum
{

STATE_INITIAL, /**< @brief Initial state after start-up; decides whether
to accelerate in assisted or normal mode depending on throttle/brake input
and rotor speed. */
STATE_THROTTLE_PRIO, /**< @brief Priorizes throttle over break input for
a certain time (counter) in order to generate enough torque for
acceleration on hill. */
STATE_NORMAL_ACCELERATION /**< @brief Add up both throttle and brake
inputs to calculate desired torque. State is left, if both inputs equal
zero and rotor speed is below threshold. */

}hillAssistState_TypeDef;

7/20

FRIWO SDK

In section /* PUBLIC VARIABLES */ we define global variables which are accessible by Enable Tool and can be
divided into two types:

• Display variables: Read only access (EMERGE_DISP_RAM)
• Calibration variables: Read and write access (EMERGE_NV_RAM_PAGE1)

The differentiation is done by using the keyword __attribute__ to provide the defined variables with the pro-
perty to be stored in a specific RAM page or section.

• Define the following custom display variables using syntax

__attribute__((section(“EMERGE_DISP_RAM”)))

8/20

FRIWO SDK

/*~~~*/
/* PUBLIC VARIABLES */
/*~~~*/

/**
* Dene variables to be displayed in FRIWO EnableTool Application.
* Section EMERGE_DISP_RAM: Application data which will be read from Flash.
* All data types which can be chosen: Int8, Int16, Int32, UInt8, UInt16, UInt32,

Bool and Float32.
*/

__attribute__((section(“EMERGE_DISP_RAM”)))
volatile Float32 TRQ_DES_Throttle_Input; /*

Description: Throttle signal value after selection of input channel [%] */

__attribute__((section(“EMERGE_DISP_RAM”)))
volatile Float32 TRQ_DES_Brake_Input; /*

Description: Brake signal value after selection of input channel [%] */

__attribute__((section(“EMERGE_DISP_RAM”)))
volatile Float32 TRQ_DES_ReverseGear_Input; /*

Description: Shows if reverse gear is selected after selection of input
channel; 0 = forward gear selected; 1 = reverse gear selected */

__attribute__((section(“EMERGE_DISP_RAM”)))
volatile Float32 TRQ_DES_TorqueRequest; /*

Description: Shows the desired torque request returned to trqdesApi [%]; */

__attribute__((section(“EMERGE_DISP_RAM”)))
volatile UInt8 TRQ_DES_TorqueRequest_UpperLim; /*

Description: Shows if desired torque has reached the upper bound of
allowed operational range */

__attribute__((section(“EMERGE_DISP_RAM”)))
volatile UInt8 TRQ_DES_TorqueRequest_LowerLim; /*

Description: Shows if desired torque has reached the lower bound of
allowed operational range */

__attribute__((section(“EMERGE_DISP_RAM”)))
volatile UInt8 TRQ_DES_HillAssist_State; /*

Description: Shows the actual state of hill-assist algorithm;
0 = Initial state; 1 = Throttle priorization;
2 = Accelerate without priorization; */

__attribute__((section(“EMERGE_DISP_RAM”)))
volatile UInt16 TRQ_DES_HillAssist_ValCounter; /*

Description: Shows the actual value of hill-assist counter to priorize
throttle */

9/20

FRIWO SDK

• Define the following custom calibration variables using syntax

/**
* Dene variables to be calibrated with FRIWO EnableTool Application.
* Section EMERGE_NV_RAM_PAGE1: Standart application data which will be stored in

ash when writing a snapshot.
* All data types which can be chosen: Int8, Int16, Int32, UInt8, UInt16, UInt32,

Bool and Float32.
*/
__attribute__((section(“EMERGE_NV_RAM_PAGE1”)))
volatile UInt8 TRQ_DES_C_ReverseGear_TestInput = 0u; /*

Description: Test parameter for manual input of reverse gear signal [-];
Limits: 0...1 */

__attribute__((section(“EMERGE_NV_RAM_PAGE1”)))
volatile UInt16 TRQ_DES_C_ThrottlePriorization_Time = 10000u; /*

Description: Parameter for time during which throttle will be priorized
when both brake and throttle

pedal are used in parallel [ms]; Limits: 0...65535 */

__attribute__((section(“EMERGE_NV_RAM_PAGE1”)))
volatile Float32 TRQ_DES_C_ThrottlePriorization_MaxRotorSpeed = 2.F; /*

Description: Parameter for maximum rotor speed to priorize throttle when
both brake and throttle

pedal are used in parallel [1/s]; Limits: -1...2000 */

__attribute__((section(“EMERGE_NV_RAM_PAGE1”)))

Next, we define a private function for saturation of Float32 signals. This function should receive the lower and
upper bound value as well as the signal to be saturated itself. The return value is the saturated signal.

• Declare the function prototype sigSaturation in section /* PRIVATE FUNCTION PROTOTYPES */:

/*~~~*/
/* PRIVATE FUNCTION PROTOTYPES */
/*~~~*/

/* Saturation function to saturate intermediate results and return parameters */
Float32 sigSaturation(Float32, Float32, Float32);

10/20

FRIWO SDK

• Define the private function sigSaturation in section /* PRIVATE FUNCTIONS */:

/*~~~*/
/* PRIVATE FUNCTIONS */
/*~~~*/

/**
* @brief Saturate input signal by the transfered lower and upper limits.
* @param sigLowerLimit: Lower limit of input signal used for saturation.
* @param sigUpperLimit: Upper limit of input signal used for saturation.
* @param sigInput: Input signal to be saturated.
* @return saturated value of input.
*/

Float32 sigSaturation(Float32 sigLowerLimit, Float32 sigUpperLimit, Float32
sigInput){

Float32 sigOutput = 0.F;

if (sigInput > sigUpperLimit) {
sigOutput = sigUpperLimit;

}
else {

if (sigInput < sigLowerLimit) {
sigOutput = sigLowerLimit;

}
else {

sigOutput = sigInput;
}

}
return sigOutput;

}

11/20

FRIWO SDK

IMPLEMENT HILL ASSIST

At this point we’re done with preparation. Now we can stick to the public function TRQ_DES_custom() and focus on
the Hill Assist itself. First we need to get all relevant variables from the API as input for our module. Required inputs
for the Hill Assist application are: Analog Inputs 1 and 2, Motor Rotor Speed and the State of Torque Control. Additio-
nally, the state and counter variables have to be defined, which describe the procedure of the state machine. These
variables are set to a default value.

• Get all relevant variables from API using the Get-functions specified in trqdesApi.h and store them in locally
defined variables:

• Define local static variables for the state and counter value of the Hill Assist using the predefined enume-
ration datatype hillAssistState_TypeDef:

/*~~~*/
/* PUBLIC FUNCTIONS */
/*~~~*/

/**
* @brief Public function for desired torque calculation which can be customized.
*
* This function is the rst module of torque calculation and strategy, which is

called in basic rmware.
* In this example, the function realizes a hill-assist functionality which can be

used in eScooter applications.
* Necessary input values such as analog input signals from throttle and brake

pedal are received from trqdesApi through
* Get functions. Additionaly, there are four output signals which have to be set

since they are cross connected to
* other modules in basic rmware.
* @see trqdesApi.h le for more details about available Get and Set functions.
*/

void TRQ_DES_custom(void){

/* Get desired signals from trqdesApi and store them in locally dened
variables. */
Float32 AnalogInput1_Signal = trqdesApi_Get_AIN1_Throttle();
Float32 AnalogInput2_Signal = trqdesApi_Get_AIN2_Throttle();
Float32 Motor_RotorSpeed = trqdesApi_Get_INFO_Rotor_Speed();
Float32 TorqueControl_Status = trqdesApi_Get_SM_OUT_SYS_Trq_Control();

/* Dene state and counter variables which show the current state of hill-
assist state machine. */
static hillAssistState_TypeDef stateHillAssist = STATE_INITIAL;
static UInt16 ctrHillAssist = 0u;

12/20

FRIWO SDK

To be sure that the input values do not exceed certain levels, we use the private saturation function
sigSaturation() to limit them accordingly. Within this scope we store the limited analog signal values to the global
variables TRQ_DES_Throttle_Input and TRQ_DES_Brake_Input.

• Saturate the input values using private function sigSaturation():

Now the different states of the Hill Assist can be written down as illustrated in figure 1. We use a switch-ca-
se-statement to distinguish between the three different states. The state transitions are represented by if-el-
se-statements within the case bodies. The torque request is calculated by throttle and brake input depending
on the respective conditions, while the result is stored in the globally defined variable TRQ_DES_TorqueRequest.

As already mentioned in the description of the hill assist, we need the calibration parameter TRQ_DES_C_Thrott-
lePriorization_MaxRotorSpeed which implements the maximum rotor speed threshold when to jump to “STATE_
THROTTLE_PRIO”. Additionally, the remaining time for throttle priorization has to be calibrated by the parameter
TRQ_DES_C_ThrottlePriorization_Time, which sets the reload value of the Hill Assist counter. Since the custom
TRQ_DES module is executed every 1ms, the time value must be specified in milliseconds.

Both parameters have been defined already in the previous section of this guide and must now be handled ac-
cordingly. For safety reasons the Hill Assist is only executed, if the status of torque control is active. Otherwise,
torque request will be set to zero and state/counter variables will be set to their initial values.

/* Saturate the input signals to the desired range */
TRQ_DES_Throttle_Input = sigSaturation(0.F, 100.F, AnalogInput1_Signal);
TRQ_DES_Brake_Input = sigSaturation(0.F, 100.F, AnalogInput2_Signal);
Motor_RotorSpeed = sigSaturation(-2400.F, 2400.F, Motor_RotorSpeed);
TorqueControl_Status = sigSaturation(0.F, 1.F, TorqueControl_Status);
TRQ_DES_ReverseGear_Input = sigSaturation(0.F, 1.F, (Float32)TRQ_DES_C_ReverseGear_TestInput);

13/20

FRIWO SDK

• Implement state-machine of Hill Assist to be executed depending on torque control status:

/* Make sure that system is ready and torque control is active by checking the status ag for
torque control */
if(TorqueControl_Status == 1.F) {

/* Implement the state-machine for the hill-assist using the three states STATE_INITIAL,
STATE_THROTTLE_PRIO and STATE_NORMAL_ACCELERATION */
switch(stateHillAssist) {

case STATE_INITIAL: {
/* When accelerating while brake is pulled and rotor speed is below threshold,
reload hill-assist counter and jump to STATE_THROTTLE_PRIO */
if (TRQ_DES_Throttle_Input > 0.F && TRQ_DES_Brake_Input > 0.F &&
abs(Motor_RotorSpeed) <= TRQ_DES_C_ThrottlePriorization_MaxRotorSpeed) {

TRQ_DES_TorqueRequest = TRQ_DES_Throttle_Input;
stateHillAssist = STATE_THROTTLE_PRIO;
TRQ_DES_HillAssist_State = (UInt8)stateHillAssist;
ctrHillAssist = TRQ_DES_C_ThrottlePriorization_Time;
}

/* When accelerating without holding brake there is no priorization of
throttle input and jump to STATE_NORMAL_ACCELERATION */
else if (TRQ_DES_Throttle_Input > 0.F && TRQ_DES_Brake_Input <= 0.F) {

TRQ_DES_TorqueRequest = TRQ_DES_Throttle_Input - TRQ_DES_Brake_Input;
stateHillAssist = STATE_NORMAL_ACCELERATION;
TRQ_DES_HillAssist_State = (UInt8)stateHillAssist;
}

/* When there is no acceleration stay in STATE_INITIAL */
else {

TRQ_DES_TorqueRequest = TRQ_DES_Throttle_Input - TRQ_DES_Brake_Input;
TRQ_DES_HillAssist_State = (UInt8)stateHillAssist;
}

break;
}
case STATE_THROTTLE_PRIO: {

ctrHillAssist--;
/* If still accelerating when counter reaches zero jump to
STATE_NORMAL_ACCELERATION */
if (TRQ_DES_Throttle_Input > 0.F && ctrHillAssist == 0u) {

TRQ_DES_TorqueRequest = TRQ_DES_Throttle_Input - TRQ_DES_Brake_Input;
stateHillAssist = STATE_NORMAL_ACCELERATION;
TRQ_DES_HillAssist_State = (UInt8)stateHillAssist;
}

/* If throttle is released while counter still running reset counter and jump
back to STATE_INITIAL */
else if (TRQ_DES_Throttle_Input <= 0.F && ctrHillAssist != 0u) {

ctrHillAssist = 0u;
TRQ_DES_TorqueRequest = TRQ_DES_Throttle_Input - TRQ_DES_Brake_Input;
stateHillAssist = STATE_INITIAL;
TRQ_DES_HillAssist_State = (UInt8)stateHillAssist;
}

/* As long as counter has not reached zero priorize throttle over brake input */
else {

TRQ_DES_TorqueRequest = TRQ_DES_Throttle_Input;
}

break;
}
case STATE_NORMAL_ACCELERATION: {
/* If both pedals throttle and brake are released and rotor speed is below
threshold,go back to STATE_INITIAL to reset hill-assist state machine */
if (TRQ_DES_Throttle_Input <= 0.F && TRQ_DES_Brake_Input <= 0.F &&

abs(Motor_RotorSpeed) <= TRQ_DES_C_ThrottlePriorization_MaxRotorSpeed) {
TRQ_DES_TorqueRequest = TRQ_DES_Throttle_Input - TRQ_DES_Brake_Input;
stateHillAssist = STATE_INITIAL;
TRQ_DES_HillAssist_State = (UInt8)stateHillAssist;
}

/* Normal acceleration without priorization after hill-assist counter has reached
zero */
else {

TRQ_DES_TorqueRequest = TRQ_DES_Throttle_Input - TRQ_DES_Brake_Input;
}

break;
}

}
}
else {

stateHillAssist = STATE_INITIAL;
ctrHillAssist = 0u;
TRQ_DES_TorqueRequest = 0.F;

}

14/20

FRIWO SDK

• Visualize the actual state and counter value by writing them to the previously defined global variables
which are accessed by FRIWO Enable Tool:

As also described in the variable description document, the allowed range of the desired torque request is
within -100% and 100%. Thus, the variable TRQ_DES_TorqueRequest has to be saturated to these boundaries.
Additionally, we need to do some torque coordination depending on rotor speed and reverse gear selection since
torque request can also be negative for regenerative braking.

Two different issues have to be considered:

1. The torque calculation up to this point is done only for the forward gear.

2. If motor is in standstill and we keep holding the brake: A negative torque is generated by the brake
input, thus motor would start rotating backwards if there was no mechanical brake torque.

As a result of the first issue, we need to process the parameter TRQ_DES_C_ReverseGear_TestInput to distingu-
ish between driving directions and invert torque request respectively.

Addressing issue number two we define mechanical rotor speed thresholds in forward and backward direction
(-0.5…0.5 1/s), up to which no negative torque will be generated.

/* Show current state and counter value of hill-assist state machine */
TRQ_DES_HillAssist_ValCounter = ctrHillAssist;
TRQ_DES_HillAssist_State = (UInt8)stateHillAssist;

https://friwo.link/ag/variable-description

15/20

FRIWO SDK

Finally, we need to set the module’s outputs using the trqdesApi as described above in section “Preparati-
on”. Even if we solely focused on the calculation of the desired torque request within this application, we need
to return also the remaining outputs since they are cross connected to other modules and crucial for basic
firmware execution. These are the throttle and brake input signals as well as the reverse gear input (see also
module description).

• Set module’s outputs using the Set-functions of the trqdesApi to return the calculated values:

• In Keil menu bar select File->Save all to save your file inside the project workspace

We use the private function sigSaturation() to limit the calculated torque request to the respective limits.

• Saturate the desired torque request TRQ_DES_TorqueRequest depending on reverse gear selection
and motor rotor speed:

/**
* Saturation of relative torque request depending on rotor speed and driving direction.
* If motor rotor speed exceeds a certain level, regenerative braking is endabled.
* Otherwise the motor rotor is just spinning out, without regenerative torque.
*/
if(Motor_RotorSpeed >= 0.5F) {

/* Rotor spins in forward direction */
if(TRQ_DES_ReverseGear_Input == 0) {

/* Positive and negative torque possible for regenerative braking */
TRQ_DES_TorqueRequest = sigSaturation(-100.F, 100.F, TRQ_DES_TorqueRequest);

}
else {

/* Only negative torque if reverse direction selected and rotor spins forward */
TRQ_DES_TorqueRequest = sigSaturation(-100.F, 0.F, TRQ_DES_TorqueRequest);

}
}
else if(Motor_RotorSpeed <= -0.5F) {

/*Rotor spins in negative direction */
if(TRQ_DES_ReverseGear_Input == 0) {

/* Only positive torque possible */
TRQ_DES_TorqueRequest = sigSaturation(0.F, 100.F, TRQ_DES_TorqueRequest);

}
else {

/* Only negative torque if reverse direction selected and rotor spins forward */
TRQ_DES_TorqueRequest = sigSaturation(-100.F, 100.F, -TRQ_DES_TorqueRequest);

}
}
else {

/* Rotor is at standstill or close to it */
TRQ_DES_TorqueRequest = sigSaturation(0.F, 100.F, TRQ_DES_TorqueRequest);
if(TRQ_DES_ReverseGear_Input == 1) {

/* Only negative torque if reverse direction selected */
TRQ_DES_TorqueRequest = -TRQ_DES_TorqueRequest;

}
}

https://friwo.link/ag/module-description

/**
* Return calculated set values as module outports to trqdesApi.
* Besides desired torque TRQ_DES_TorqueRequest the following cross connections for state
* management and system startup must be considered and set as well:
* TRQ_DES_Driver_Throttle, TRQ_DES_Driver_Brake and TRQ_DES_Reverse_Gear
*/
trqdesApi_Set_TRQ_DES_Driver_Throttle(TRQ_DES_Throttle_Input);
trqdesApi_Set_TRQ_DES_Driver_Brake(TRQ_DES_Brake_Input);
trqdesApi_Set_TRQ_DES_Driver_Reverse_Gear(TRQ_DES_ReverseGear_Input);
trqdesApi_Set_TRQ_DES_Trq_Req_Rel(TRQ_DES_TorqueRequest);

16/20

FRIWO SDK

To display the previously defined global variables in FRIWO Enable Tool, we need to describe these variables in
the variable description file TRQ_DES_variables.xml. This file can also be found in the workspace folder.

• Navigate to the project’s subfolder .\module_TRQ_DES
• Open TRQ_DES_variables.xml with a text editor of your choice
• Add all global variables defined at the beginning of the source file TRQ_DES_custom.c (see also section

“Preparation”) using the following format for each:

Note: Make sure that the datatypes defined in the xml-file match with the variable declarations in your c-file.
Otherwise data is not processed correctly.

VARIABLE DESCRIPTION

<ddObj Name=”TRQ_DES_Throttle_Input” Kind=”Variable”>
<ddProperty Name=”Description”>Throttle input value after selection of input

channel [%]; Limits: 0...100</ddProperty>
<ddProperty Name=”Type”>Float32</ddProperty>
<ddProperty Name=”Scaling”>./LocalScaling</ddProperty>
<ddProperty Name=”Value”></ddProperty>
<ddProperty Name=”Min”>0</ddProperty>
<ddProperty Name=”Max”>100</ddProperty>
<ddProperty Name=”Address”></ddProperty>
<ddObj Name=”LocalScaling” Kind=”Scaling”>

<ddProperty Name=”LSB”>1</ddProperty>
<ddProperty Name=”Unit”>s</ddProperty>

</ddObj>
</ddObj>

17/20

FRIWO SDK

CREATING THE NEW FIRMWARE

At this point we have successfully prepared the c- and variable description files for implementation of the Hill
Assist. In the following we use the FRIWO SDK to compile our individual module TRQ_DES_custom and integrate
it into the basic software framework.

• Open FRIWO_SDK (if not already open)
• In main view press Select Project
• Press Load Project
• Navigate to the project folder in your SDK workspace (i.e. .\SDK_Workspace\HillAssist)
• Select the project file (i.e. HillAssist.sdkproj) and press open

Now the default project settings are loaded. We can check if the right module (TRQ_DES_custom) is selected by
pressing Select Module in the main view.

• Press Compile to build the firmware

The compile process is finished if the process bar is fully loaded and the status shows “Finished – Click here to
view your firmware!”. By clicking on the text, you are navigated directly to the output build folder of the firmware
file (*.eef). This folder is generated inside the project path (i.e. .\YourProjectName\FirmwareRelease\RELEASEID)

If an error occurs during the compilation process, refer to section „Troubleshooting“ in our Manual using the
indicated error code. https://friwo.link/ag/manual

UPDATE MOTOR CONTROLLER

For updating the Motor Controller with the generated firmware we have to switch from FRIWO SDK to FRIWO
Enable Tool.
Please refer to Enable Tool Manual for further information about updating the Motor Controller.

https://friwo.link/ag/et-manual

https://friwo.link/ag/enable-tool

18/20

FRIWO SDK

CALIBRATE HILL ASSIST

At first, make sure the following requirements are given:

• System is in safe conditions, i.e. motor is in standstill
• FRIWO EnableTool is running
• Motor Controller with customized Hill Assist firmware is connected via USB
• Correct .xml-file for variable configuration is loaded in FRIWO EnableTool
• Throttle pedal is connected to AIN1-Interface
• Brake pedal is connected to AIN2-Interface

Now we have a look at the SDK setup to make sure, that our customized module is executed by basic firmware.

• In FRIWO EnableTool variable list on the right select the SDK dropdown
• Set SDK_C_TRQDES_Custom_Module_Enable to 1 to activate the TRQ_DES_custom module

Note: Activation/Deactivation of SDK modules is only possible, if the motor is in standstill.

The display variable SDK_TRQDES_Custom_Module_Enable = 1 indicates that the TRQ_DES_custom module is
executed on the Motor Controller.

• In variable list on the right select the TRQ_DES_custom dropdown to show the previously defined
variables:

19/20

FRIWO SDK

• Double click the display variables in order to move them to the logging window on the left:

In initial operation, when torque control is deactivated, the Hill Assist is not executed, thus TRQ_DES_HillAssist_State
indicates state 0, which relates to STATE_INITIAL. This status holds also, if torque control is activated and no torque
is requested.

• Simultaneously hold the brake pedal and accelerate while watching the two variables TRQ_DES_HillAssist_State
and TRQ_DES_HillAssist_ValCounter

20/20

FRIWO SDK

The state machine jumps into state STATE_THROTTLE_PRIO, indicated by TRQ_DES_HillAssist_State = 1 as
long as mechanical rotor speed is below the threshold TRQ_DES_C_ThrottlePriorization_MaxRotorSpeed. During
this time, the requested torque TRQ_DES_TorqueRequest equals the signal TRQ_DES_Throttle_Input, which is
prioritized.

The variable TRQ_DES_HillAssist_ValCounter shows the actual value of the Hill Assist counter which is reloa-
ded by the calibratable value TRQ_DES_C_ThrottlePriorization_Time when entering the state STATE_THROTT-
LE_PRIO and counts down every time the TRQ_DES_custom module is called.

If this counter reaches zero, the state machine jumps into state STATE_NORMAL_ACCELERATION, indicated by
TRQ_DES_HillAssist_State = 2.

If this condition holds, both signals TRQ_DES_Throttle_Input and TRQ_DES_Brake_Input are simply subtracted
in this application. In order to get back into STATE_INITIAL, both the throttle and brake pedal must be released.

Have fun programming!

Feedback

We are working very hard to improve our products and therefore feedback is
indispensable! Please send us your valuable feedback as contact form or via Mail
to feedback@friwo.com

https://friwo.link/ag/feedback

