
WHITE PAPER

GStreamer Optimized
Multimedia Processing
for Audio and Video

WHITE PAPER 2

GStreamer Optimized Multimedia Processing for
Audio and Video

GStreamer is a platform-independent
(Microsoft® Windows®, Linux®, Android™,
OS X®, BSD, OpenSolaris) multimedia
framework for constructing modular
processing pipelines using an extensible
plug-in architecture. Applications range
from simple Ogg Vorbis playback and
audio/video streaming to complex
audio (mixing), video (non-linear editing)
processing, metadata, subtitles and
much more.

Applications built on the GStreamer
framework can take advantage of
advances in codec and filter technology
transparently. Developers and hardware
vendors can add new codecs and filters
by writing a simple plug-in with a clean,
generic interface. GStreamer is released
under the GNU LGPL.

Background
The GStreamer project started life in
1999 and since that time has gained
significant commercial recognition.
Designed for used in small embedded
devices, it has been adopted by the
mobile phone industry to manage
compression and decompression of video
and today is widely used in Android
tablets and cell phones.

GStreamer is a powerful multimedia
framework that is both a successful
open source project and commercial
middleware due to both its extensibility
and rich set of readily available plug-ins.
It has been adopted in a broad range of
products from the like of Intel, NVIDIA,
Nokia, Motorola, Texas Instruments
and Freescale.

The API and libraries are written in C
making them very portable. Internally,

the code uses an object system called
GObject to maximize code reuse and
modularity while maintaining cross-
platform support. The project aims to
provide developers with a clean and
powerful interface, an object-oriented
design approach, extensible framework
with dynamically loaded plug-ins,
binary only plug-in deployment and a
high performance plug-in architecture
with minimal overhead and allowing for
hardware acceleration.

Today, GStreamer is used in many open
source applications including Totem,
Rhythmbox and Songbird as well as being
heavily utilized by the GNOME desktop
environment under Linux.

Roll your own Plug-in
Increasingly in bespoke solutions, we
see the need to create something new
to handle media in a specific way. This
can be for many reasons such as to
allow interoperability with a new device
(e.g. camera, capture card) or to handle
a specific media format. Using the
GStreamer plug-in template, it is possible
to manipulate the media and convert it
into something more usable.

It does not take long to import video into
a new GStreamer source element (using
the provided templates) from a new
video source and manipulate the video
buffer into a standard format so that it
can be processed. Below, GStreamer is

Figure 1 - ICS8580 / DAQMAG2A – GStreamer for video input

WHITE PAPER 3

being used to acquire video data from
the Abaco Systems ICS-8580 video
capture and compression XMC. Three
separate video inputs (two PAL and one
HD SDI) are being processed using a
single GStreamer plug-in; the pipeline
then applies some text overlay before
being displayed on the screen. As it
was only necessary to deal with the
image acquisition (the GStreamer source
element) it was then possible to very
quickly display, manipulate, compress
and finally stream the incoming video,
leveraging the power of the existing
GStreamer plug-ins.

Extensibility and future proofing
The future will bring 4K, Ultra HD, H.265,
HDR (High Dynamic Range) and other
emerging formats and these can easily
be accommodated using the GStreamer
framework with the addition of more
efficient encoders/decoders adding to the
already rich set of open source plug-ins.

These innovations will require increased
processing capability and it will be the
hardware vendors who will step up and
handle the burden of media processing,
freeing the CPU to perform other tasks.
Today, products such as the Abaco
Systems mCOM10-K1 NVIDIA Tegra
ARM-based system-on-module (SoM)
provide hardware acceleration for H.264
streaming (using OpenMAX1-enabled
GStreamer plug-ins) while delivering up
to 97% compression of video streams.

Typical applications for this include
network-enabled video recording/
playback and streaming video where
bandwidth is limited (e.g. wireless RF)
from remote locations.

Uses of the mCOM10-K1 are broad
ranging and, when combined with the
192 GPGPU (general purpose computing
on graphics processing unit) cores, it is
possible to undertake detailed analysis of
video data to enable increased autonomy
and reduce the operator load inside
ground vehicles. In both commercial and
military applications, smaller embedded
processors are paving the way towards
greater autonomy and increasing safety.

Abaco Systems utilizes the GStreamer
framework inside its network-enabled
recording solution. This has enabled
a key customer to capture, analyze,
manipulate and store over 6 Terabytes of
intelligence data, including a vast array of
still- and moving images, and to share this
intelligence in real, or very near real, time,
depending on requirement.

Multimedia processing examples
Below is shown one of the simplest
pipelines that is possible. It takes the
YUYV-encoded raw video directly from
the source (in this case the ICS-8580)
shown in red and passes it unmodified (via
the capabilities filter shown in green) to
the sink shown in purple, to be displayed
on the screen. Figure 2 is a pipeline
(graph) showing this processing.

The following examples use the macros
defined below (PAL resolution at 24fps)
and can be modified as required:

export MULTICAST=239.192.1.114
$ Multicast IP Address
export PORT=5004
$ IP Port number
export WIDTH=720
export HEIGHT=576
export RATE=24
export BITRATE=8000000

All the available plug-ins installed on a
system can be seen by typing:

$ gst-inspect-1.0

To quickly test a pipeline, the gst-
launch-1.0 command from the command
line can be used. To create a synthetic
video source for testing purposes, the
videotestsrc source element can be used
and the result displayed on the screen
using the xvimagesink sink element:

Figure 2 GStreamer example pipeline (PAL video import)

WHITE PAPER 4

$ gst-launch-1.0 -v
videotestsrc pattern=snow !
“video/x-raw, width=${WIDTH},
height=${HEIGHT},” ! xvimagesink

To use a different source (e.g. ICS-8580 as
a video capture card) the source element
can be changed as follows:

$ gst-launch-1.0 –v 8580src
input=4 type=1 res=2 channel=0
! “video/x-raw, width=${WIDTH},
height=${HEIGHT}, “ !
xvimagesink

In the remaining examples, the video test
source element will be used to illustrate
the examples.

This example shows how raw video can
be streamed (multicast) over Ethernet
using RTP (Real Time Protocol). The ‘tee’
plug-in is used to fork the video to the
screen and the UDP sink.

$ gst-launch-1.0 -q
${SOURCE} ! “video/x-raw,
width=${WIDTH}, height=${HEIGHT},
framerate=${RATE}/1,
format=(string)UYVY” ! tee
name=t ! queue ! rtpvrawpay
! udpsink host=${MULTICAST}
port=${PORT} t. ! xvimagesink

This pipeline can receive the incoming
video and overlay some text:

$ gst-launch-1.0 udpsrc
port=${PORT} multicast-
group=${MULTICAST}
caps=”application/x-
rtp, media=(string)video,
encoding-name=(string)
RAW, sampling=(string)
YCbCr-4:2:2, depth=(string)8,
width=(string)${WIDTH},
height=(string)${HEIGHT},
payload=(int)96,
framerate=${RATE}/1” ! queue
! rtpvrawdepay ! textoverlay
halignment=2 shaded-
background=true text=”Playing
RAW...” ! xvimagesink

To optimize bandwidth efficiency, the
H.264 media encoder can be used to
compress/decompress the video data.
In this last example, the OpenMax (omx)
media encoders provided by NVIDIA
(supported on the mCOM10-K1) can be
used to offload the video compression:

$ gst-launch-1.0 -v
videotestsrc ! “video/x-raw,
width=${WIDTH}, height=${HEIGHT},
framerate=${RATE}/1,
format=(string)UYVY” ! tee
name=t ! queue ! videoconvert
! omxh264enc control-rate=2
target-bitrate=${BITRATE}
! rtph264pay! udpsink
host=${MULTICAST} port=${PORT}
t. ! xvimagesink

The following pipeline can receive the
incoming compressed video stream,
decompress it, overlay some text and
display the result:

$ gst-launch-1.0 –v udpsrc
port=${PORT} multicast-
group=${MULTICAST}
caps=”application/x-
rtp, media=(string)video,
encoding-name=(string)
RAW, sampling=(string)
YCbCr-4:2:2, depth=(string)8,
width=(string)${WIDTH},
height=(string)${HEIGHT},
payload=(int)96,
framerate=${RATE}/1” ! queue
! rtph264depay ! omxh264dec
! textoverlay halignment=2
shaded-background=true
text=”Playing H.264...” !
xvimagesink

If a platform does not have omx-enabled
plug-ins, software encoders can be used
as a fall back (x264enc is a software only
encoder for H.264).

In this final example, a raw video stream is
captured, compressed and stored in a file
for later playback.

$ gst-launch-1.0 udpsrc
port=${PORT} multicast-
group=${MULTICAST}
caps=”application/x-
rtp, media=(string)video,
encoding-name=(string)
RAW, sampling=(string)
YCbCr-4:2:2, depth=(string)8,
width=(string)${WIDTH},
height=(string)${HEIGHT},
payload=(int)96,
framerate=${RATE}/1” !
rtpvrawdepay ! nvvidconv !
capsfilter caps=”video/x-
nvrm-yuv,format=(fourcc)
I420” ! nv _ omx _ h264enc
bitrate=${BITRATE} ! queue
! matroskamux ! filesink
location=MyCompressedVideo.mkv

Video files can then be played back offline
using a standard media player such as
VLC Media Player2.

For more detailed examples on how to
accelerate media processing pipelines
using the OpenMAX-accelerated NVIDIA
plug-ins on the mCOM10-K1, please
refer to the NVIDIA Technical Note
‘Jetson TK1/TEGRA Linux Driver Package
Multimedia User Guide’.

Creating pipeline diagrams automatically
Pipeline diagrams for documentation or
debugging can be created by following
the steps below. On Debian3-based
Linux systems, install the prerequisites
using apt-get (graphviz contains the dot
command needed later on):

$ sudo apt-get install graphviz

Define where the output files are to be
sent:

$ export GST _ DEBUG _ DUMP _
DOT _ DIR=/tmp/

WHITE PAPER 5

Americas: 866-OK-ABACO or +1-866-652-2226 Asia & Oceania: +81-3-5544-3973
Europe, Africa, & Middle East: +44 (0) 1327-359444
Locate an Abaco Systems Sales Representative visit: abaco.com/products/sales

abaco.com @AbacoSys
©2016 Abaco Systems. All Rights Reserved. All other brands, names or trademarks are property
of their respective owners. Specifications are subject to change without notice.

WE INNOVATE. WE DELIVER. YOU SUCCEED.

10/15 A-WP-893

Run the pipeline (using gst-launch-1.0).
When done, do an ‘ls /tmp’ and the
following should appear:

0.00.00.972540004-gst-launch.
NULL _ READY.dot
0.00.01.051387461-gst-launch.
READY _ PAUSED.dot
0.00.01.074729712-gst-launch.
PAUSED _ PLAYING.dot
0.00.12.187852589-gst-launch.
PLAYING _ PAUSED.dot
0.00.12.201485839-gst-launch.
PAUSED _ READY.dot
psplash _ fifo

Generate the diagram from the dot file
using the command below:

$ dot -Tpng
0.00.24.846778049-gst-launch.
PLAYING _ PAUSED.dot > pipeline.
png

Open the image using a favorite viewer

$ eog pipeline.png

Application Integration
The gst-launch-1.0 command line
tool is useful for testing pipelines but
ultimately users will want to include
these pipelines in their application code
and create a machine interface around
the functionality. The GStreamer API
usage is described in the Applications
Developers Guide and allows the
pipeline to be manipulated dynamically
in a C/C++ application. There are also
QtGstreamer4 wrappers available
to integrate GStreamer into the Qt5
application development framework to
allow platform-agnostic applications that
can be run under Linux or Windows.

Figure 3 Video Player build on Gstreamer and Qt

To see how Abaco Systems products can help with media processing applications,
please contact Abaco’s regional sales manager and ask for a demonstration. For more
information on GStreamer, please visit the website and project home page. http://
GStreamer.freedesktop.org/

• https://www.khronos.org/openmax/
• http://www.videolan.org/vlc
• https://www.debian.org/
• http://GStreamer.freedesktop.org/modules/qt-GStreamer.html
• http://www.qt.io/

