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Rapid Prototyping a High‑Performance System for 
UAV SAR Processing

A gating factor in the development of sophisticated, high performance applications – 
especially those to be deployed in highly SWaP-constrained environments – is often the 
availability of appropriate hardware. However: there is a solution…

Introduction

Your next OpenVPX system design will likely need a customized backplane to provide the appropriate fabric interconnect between 
general purpose processors (GPP), graphics processing units (GPU), fabric switches, imaging sensors, and input/output to other 
systems. But: customization is rarely synonymous with quick‑turn design, and today’s development cycles are feeling the squeeze. 
While hardware and software development can begin concurrently, hardware availability is the ultimate barrier to a qualified design.

So: having representative hardware at an early stage in the development process aids in the timely achievement of both hardware and 
software milestones.

The lab-to-rugged transition
Clearly, the sequential process of specifying a backplane design, 
waiting for fabrication, and then testing the system is not 
deadline‑friendly, and does not provide flexibility when (and they 
always do) design parameters change midstream.  A common 
way around this is to develop with desktop PCs or rack‑mounted 
computers, graphics cards, and commercial network switches 
– and then make the change to rugged embedded hardware as 
it becomes available. Further, the use of open source operating 
systems like Linux, widely‑supported programming APIs like 
OpenCL, Open VX, and OpenCV, and industry‑standard math 
libraries and inter‑processor communication (IPC) protocols 
– such as those found in Abaco’s AXIS software suite – aid in 
making the lab‑to‑rugged transition one of relative elegance. 

However: Are software boot‑up times accurately represented? 
Are devices responding properly to reset signals and enumerating 
properly? How to account for custom BIOS settings? Can 
secure boot, trusted execution, or built‑in test features be 
exercised? Are control‑ and data‑plane fabrics true to the rugged 
implementation? Did you get used to more memory, larger 
caches, and higher clock speeds than will be available in the 
SWaP‑constrained system? What about all the features included 
in the single board computer (SBC) software development kit 
(SDK) that couldn’t be exercised on a PC? And how will that 
pesky watchdog timer be handled? That’s just what comes up on 
day one.

Open CL and Open VX were created by the Khronos Group, 
a collaboration of industry partners. OpenCL (Open 
Computing Language) is an open standard for cross-
platform parallel programming of diverse processors. 
OpenVX (Open Visual Acceleration) is an open standard 
for cross platform acceleration of computer vision 
applications. Open CV was an Intel Research initiative and 
is maintained by OpenCV.org. OpenCV (Open Computer 
Vision) provides acceleration for vision applications by 
leveraging Intel IPP, OpenCL and CUDA as appropriate for 
the hardware.

The solution
An ideal development cycle will incorporate something close 
to the actual hardware as soon in the development cycle as 
possible. On the one hand, waiting to develop on the actual 
hardware can be ideal, but doesn’t allow much time for software 
de‑risking activity or adaptation. On the other hand, developing on 
PCs is a great way to get a head start, but defers a mountain of 
details until late in the game. 

The solution? An ‘uncommitted’ OpenVPX backplane would 
provide several slots whose I/O is routed through the backplane 
from the front VPX connectors (designated by connectors J0, J1, 
and J2) to the rear VPX connectors (designated by connectors 
RJ0, RJ1 and RJ2), at which point rear transition modules (RTMs) 
pick up the I/O and provide industry standard connectors. RTMs 
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are then cabled together as needed. Uncommitted backplanes 
are readily available because they are not custom, and are flexible 
because fabric connectivity and switching topology can be 
modified by simply making cabling changes.

Abaco did exactly this with the SCVPX3U‑12 – a 3U Open VPX 
bench‑top or rack‑mount chassis with a 12‑slot uncommitted 
backplane. Each payload slot provides differential I/O wafers that 
feed through to the rear, and accepts a 6U‑height RTM for run‑of‑
the‑mill I/O like Gigabit Ethernet, video, USB, and SATA, plus data 
plane fabric like x16 PCIe and 10 Gigabit Ethernet. 

A real world example
Let’s take a look at an example customer’s system architecture. 
The application is a synthetic aperture radar back‑end processor 
payload for a medium‑altitude endurance UAV. The system 
provides a hybrid platform for general‑purpose processing (GPP) 
on CPU and general‑purpose processing on GPU (GPGPU), 
with a tightly‑coupled peer‑to‑peer communications path 
and a 10 Gigabit pipe to the radar front‑end’s receiver‑exciter 
(REX) and beam steering. It contains three pairs of CPU‑GPU 
processors, each pair known as a slice. The members of each 
slice communicate via PCIe and Gigabit Ethernet, and each slice 
is linked to other slices through a PCIe/1GbE switch module. One 
CPU of the three slices is responsible for managing the system’s 
PCIe and 10GbE data flow – sending tasks to other peer slices for 
processing, collecting results, and passing data to the front‑end. 

SBC346 PEX431
PCIe Switch

Carrier
NIC10GBTGRA113Q

Processing Slice

1000BASE-T 1000BASE-T 2x10BASE-T

Processing Slice Processing Slice

GRA113Q SBC346 GRA113Q GRA113Q SBC346 GRA113Q GRA113Q

x1 PCIe
x4 PCIe
x8 PCIe

UAV Pod Processing System Block Diagram

SCVPX3U-12: Twelve-slot 3U Open VPX chassis that provides for 6U rear 
transition modules for fabric and I/O connectivity
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SBC346 PEX431
PCIe SwitchGRA113Q

Processing Slice

1000BASE-T 1000BASE-T 2x10BASE-T

Processing Slice Processing Slice

GRA113Q SBC346 GRA113Q GRA113Q SBC346 GRA113Q GRA113Q

Compute Tasks Compute TasksData
Ingest

Peer-to-Peer
Comms

Compute Tasks

Carrier
NIC10GBT

System Data Flow Diagram

The Abaco system hardware components are as follows:

Single-Board Computer SBC346 Intel 4th gen Core 
i7 (Haswell)

3U OpenVPX

Graphics Processor GRA113Q NVidia GM107 
(Maxwell)

3U OpenVPX

PCIe switch/1GbE 
switch/ XMC carrier

PEX431 PLX and Vitesse 3U OpenVPX

10G network interface NIC10GBT Intel X540 dual-
port 10GBASE-T 

XMC mezzanine

Careful consideration is given to achieve a PCIe architecture with 
the most favorable tradeoffs. The SBC346 managing the peer‑to‑
peer comms data flow is configured as a PCIe root complex, while 
SBC346s in other slices are configured as non-transparent ports. 
This type of port allows the root complex to map the other slices 
in the topology. PCIe switch bandwidth is shared between the 
10GbE data ingest and peer‑to‑peer comms; the advantage is that 
each slice has dedicated x8 PCIe lanes between CPU and GPU for 
highest throughput and lowest latency. Other arrangements could 
be used to distribute switching resources to provide exclusive 
bandwidth for data ingest and peer‑to‑peer comms, for example, 
but at a sacrifice to compute task throughput within slices.

Easily configured
The SBC346 managing the peer‑to‑peer comms data flow is 
also a PCIe synchronous clock source that drives the OpenVPX 
REFCLK signal to a fan‑out buffer on the backplane to distribute 
it to other slots. The SBC346 boards in other slices are REFCLK 
receivers. This is easily configured in each board’s UEFI/BIOS 
setup screen. With this arrangement, the root complex and 
other PCIe switches are in the same clock domain. Although an 

asynchronous clocking scheme is suitable for PCIe Gen 2, this 
common clock arrangement makes the system upgradeable 
to Gen 3 data rates. REFCLK is a differential 100MHz signal, 
and with a Gen 3 data rate of 8GT/s (Gigatransfers per second), 
a common clock is an effective way to minimize system jitter. 
Note that the final backplane design must take into account the 
appropriate design rules to support Gen 3.

A separate PCIe clock domain, synchronous to the CPUs on the 
SBC346s, is used between members of each slice. Peer‑to‑peer 
comms data flow is asynchronous to compute tasks but there are 
no ill effects for the system because these two functions can be 
loosely coupled with each other.

Abaco’s peer‑to‑peer interconnect SDK is utilized to provide a 
virtual network between slices. This abstraction layer presents 
an IP socket‑based interface and enables standard network 
protocols to be run over the PCIe interconnect. Hardware switch 
configuration is also required.

A useful measure for high performance embedded computing 
systems is floating‑point operations per watt, or FLOPS/Watt. 
The Intel Core i7’s dual 256‑bit fused multiply‑accumulate (FMA) 
instructions provide 32 single‑precision (SP) FLOPS per cycle. 
The NVIDIA Maxwell’s 64‑bit FMA provides 2 SP FLOPS per cycle. 
The theoretical, or peak, FLOPS calculations are shown in the 
following table.

Processor Cores Clock SP FLOPS/
cycle

Peak SP 
GFLOPS

Intel 4th gen core i7 4 2400 MHz 32 307.2

NVIDIA Maxwell 640 940 MHz 2 1203
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Each CPU‑GPU slice can provide a theoretical 1510 GFLOPS 
single‑precision. The total throughput for three slices is 
approximately 4.5 TFLOPS single‑precision, capable of hundreds 
of backscatter projections per second. The power consumption 
can be found by summing the typical power of each board in the 
system. We can also assume a power supply of 500W with an 
efficiency of 90%. 

SBC346 3 x 55W

GRA113Q 3 x 40W

PEX431 25W

NIC10G 25W

500W Power Supply @90% Eff 50W

System Power 385W

So we’ve achieved 4.5 TFLOPS in 385 Watts, or 11.7 GFLOPS for 
every Watt of power consumed. 

x4 PCIe

x4 PCIe

DVI
Ethernet

Keyboard/
Mouse

SBC326

VPX3UX601 RTM

SBC326

VPX3UX601 RTM

GRA112Q

GRA112QRTM

Prototyping the real world example

Now let’s look at an actual development system Abaco 
assembled to speed the customer along the development path. 
The critical communication paths are between members of the 
slice and between slices, so we can provide a suitable system 
using just one CPU‑GPU pair, along with a second CPU. We 
knew software development would progress in stages, so it 
was decided that the PEX431 switch and the NIC10G network 
interface were not critical for the development system. These 
would be integrated later once the backplane was fabricated and 
other hardware was received. To meet tight timelines, we chose 
representative hardware in the SBC326 and GRA112Q, instead of 
SBC346 and GRA113Q.

Conclusion

When you tackle your next custom VPX design, take advantage of 
Abaco’s OpenVPX backplanes and system components to enable 
a phased development approach and minimize development risk. 
By prototyping the critical compute and data paths, bottlenecks 
can be uncovered early in the cycle. Using the latest Intel Core i7 
and Xeon‑D processors, NVIDIA GPUs and fabric connectivity can 
provide multi-TeraFLOPS performance.
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Appendix: Building your own development system

The instructions that follow show how to configure the hardware 
and install the software for this development system. 

Hardware Setup
The development system consists of an SCVPX3U chassis, 
two SBC326, two VPX3UX601 RTM, one GRA112Q, and one 
GRA112QRTM. Two 0.5 meter PCIe cables are used.

On each VPX3UX601 RTM, populate jumpers between P7 and P8 
with 8 links to enable the Ethernet signals. Set NVMRO by fitting 
P5 1‑2, since the 3U backplane does not have NVMRO daisy 
chained to all slots.

Set one VPX3UX601 RTM as SYSCON by fitting a jumper on P5 
3‑4.

DVI monitors and USB keyboard and mouse can be used, or 
Ethernet can be used to SSH into each node from a remote 
computer.

Software
CentOS 7 is installed. The following packages are also installed:

a. Abaco SBC326 SDK, part number 162‑SLIO‑SBC326‑01UC
b. Abaco SBC326 P2P Package, part number PLIA‑SBC326‑

P1E1UC
c. NVIDIA CUDA 7.5‑ https://developer.nvidia.com/cuda‑

downloads 
d. Netperf ‑ netperf‑2.7.0‑1.el7.lux.x86_64.rpm 

Software Installation Steps
The SBC326 P2P driver requires RHEL7. The CentOS 7 kernel is 
3.10.0-229.7.2.el7.x86_64.

1. Install CentOS 7 from DVD ISO or Net‑Install ISO. The 16GB 
SSD is used as the destination. Select Gnome Desktop with 
Development Tools.

2. Perform a yum update. Sometimes another process has yum in 
use. Kill that process to free‑up yum. 

ps aux | grep yum 
kill <insert PID number> 
yum update

3. Install DKMS prior to install SDK. 

http://rpmfind.net/linux/RPM/epel/7/x86 _ 64/d/
dkms-2.2.0.3-30.git.7c3e7c5.el7.noarch.html 
yum localinstall dkms-2.2.0.3-25.el7.noarch.rpm 
–nogpgcheck

4. Install SBC326 SDK

tar –xzf 162-SLIO-SBC326-01UC.tar.gz 
cd 162-SLIO-SBC326-01UC 
./install _ sdk.sh --all

5. Install SBC326 P2P Package

tar –xzf PLIA-SBC326-P1E1UC-R04 _ 00.tar.gz 
cd PLIA-SBC326-P1E1UC-R04 _ 00 
cd kernel-driver 
make install

The P2P‑DRV‑LINUX script is installed in /etc/init.d. This script 
can be used to manually start and stop the P2P service:

/etc/init.d/P2P-DRV-LINUX <start/stop>

Put the driver in rc.local for automatic startup at boot, and make 
rc.local executable:

echo modprobe P2P-DRV-LINUX >> /etc/rc.local  
chmod +x /etc/rc.local

During initialization, the P2P nodes poll to check the availability 
of other nodes. The polling time is controlled in two files and 
defaults to 30 seconds. Modify the wait time parameters to 
90 seconds.

For manual driver start‑up, edit

/etc/init.d/P2P-DRV-LINUX and change to WAIT _
TIME=90.

For boot‑time driver start‑up, edit

/etc/modprobe.d/p2p _ module.conf and change to 
p2p _ wait _ time=90.
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To verify that the driver is loaded, look for pcie_p2p_net, p2p_plx, 
and p2p_setup modules:

lsmod|grep p2p

To verify that the driver was successful in making a peer to peer 
connection, check dmesg:

dmesg|grep p2p

You should something similar to:

eth0: p2p Ethernet over PCIE P2P Version 1.01, 
MAC 00:01:01:01:00:00

Use ifcfg-eth0 script or the Network Manger GUI to configure the 
IP addresses for the P2P network, for example 192.168.200.2 and 
192.168.200.3. Use ifconfig to view P2P Ethernet details.

Check that BIOS write protect for EEPROM is off before 
programming the PCIe EEPROM.

• Fit SYSCON and NVMRO jumper on VPX3UX601 RTM. 
Alternatively, fit SYSCON jumper and go to Chipset -> FPGA -> 
NVMRO Override.

• In BIOS: Chipset -> DIP Switch -> Config EEPROM Write 
Protection -> NVMRO Controlled, Program DIP Switch

• In BIOS: Chipset -> PLX Switch -> Unlock EEPROM
• Save and Exit and power cycle 

Program the EEPROM: 

cd <install-dir>/PLIA-SBC326-P1E1UC-R04 _ 00/
eeprom _ tools/plx

./plx-eeprom-prog-pci –m program –f ../../
eeproms/sbc326/<eeprom-file>

6. Install CUDA 7.5 which can be found at https://developer.nvidia.
com/cuda‑downloads.

sudo rpm -i cuda-repo-rhel7-7-5-local-7.5-18.
x86 _ 64.rpm 
sudo yum clean all 
sudo yum install cuda

7. Since Linux and NVidia graphics drivers are not compatible, 
remove the default Linux noveau graphics driver and install the 
NVidia driver. This is a multi‑step process, and there are various 
methods. One can be found here: 
https://www.linkedin.com/pulse/20140808222919-219659043-
rhel‑centos‑7‑and‑nvidia‑drivers

8. Install netperf 
Download https://pkgs.org/centos‑7/lux/netperf‑2.7.0‑1.el7.lux.
x86_64.rpm.html

sudo yum localinstall netperf-2.7.0-1.el7.lux.
x86 _ 64.rpm

On both nodes: 

systemctl stop firewalld (service may take a 
few minutes to stop) 
netserver –p 12865

On one node (example parameters):

netperf -fM -H 192.168.x.x -c -C -l10 -- -m 
64000

Other Tips 

1. To check PCIe bus speed:

lspci –vvv, find PLX bridge for Port 1, and 
check LnkSta parameter. Look for 5GT/s x4. 
For example, lspci –vvv –s 2:01.0

2. To rescan PCIe bus after making changes:

echo “1” > /sys/bus/pci/rescan or  
echo 1 | sudo tee /sys/bus/pci/rescan 


