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Abstract 

A technique is presented for removing large amounts of noise present in time-domain-

reflectometry (TDR) waveforms to increase the dynamic range of TDR waveforms and TDR 

based s-parameter measurements. 
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Introduction 

In order to present the concept of wavelet denoising as applied to time-domain reflectometry 

(TDR), this paper attempts to approach the topic in the following manner: 

1. The need for denoising for TDR is shown from equations that describe the dynamic range 
of TDR and the main characteristics that impact dynamic range. 

2. Denoising is presented from a Fourier domain standpoint.  While Fourier methods are not 
applicable to TDR, it is helpful for analogies that are drawn later. 

3. The reason Fourier methods are inapplicable to TDR are explored 

4. The concept of wavelets are introduced 

5. Denoising is presented from a wavelet domain standpoint. 

6. Some results are presented for wavelet denoising. 

7. The interpretation of wavelet denoised results is summarized. 

Time-Domain Reflectometry Dynamic Range 

[1] provides a formula that shows the dynamic range provided by TDR
1
.  A complete derivation 

of [1] is provided in Appendix A - Derivation of Dynamic Range. 
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[1] 

In [1], the following definitions are made which are dependent entirely on the conditions for 

measurement: 

• f  is frequency (Hz) 

• T  is the amount of time (s) to average for in the acquisition of the TDR step waveforms. 

 

Furthermore, the following definitions are made which are entirely dependent on the TDR 

instrument used: 

• 0.2A =  is the step amplitude (V) 

• bwf is the band limit set on the sampler noise (Hz) 

• actFs  is the effective actual sample rate of the sampler (S/s) 

• Ta  is the equivalent time acquisition length (s) 

• frac  is the fraction of the equivalent time acquisition containing reflections 

• eqFs  is the equivalent time sample rate of the sampler (S/s) 

• dBm�oise  is the baseline sampler noise – with no band limit applied (dBm) 

• ( )P f  is the response of the pulser as a function of frequency calculated by taking the 

Discrete Fourier transform of the first difference of the step response (dB) 

• ( )C f  is the response of the cables used to connect the pulser/sampler to the device-

under-test (DUT). 

• ( )F f is the response of any fixtures used to connect the pulser/sampler to the DUT. 
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All of these characteristics are important for dynamic range and will depend on characteristics of 

the instrument used and the characteristics of the measurement.  This paper will not discuss all of 

these characteristics, but will concentrate on a characteristic that depends more on the 

measurement and the characteristics of the device-under-test (DUT) as it relates to TDR in 

general. 

In TDR the signal applied is in the form of impulsive energy contained in the wave front incident 

on the DUT.  This energy is contained in the rising edge of the TDR waveform and is injected 

over a very short time interval.  The resulting reflections that are measured by TDR come later as 

this incident wave front moves through the DUT.  In TDR, one must wait for these reflections to 

return in order to measure them, which determines the length of the acquisition needed contained 

in the value Ta .  During the TDR acquisition, both reflections and noise are acquired by the 

TDR instrument.  It is the acquisition of noise during the acquisition that is especially 

troublesome and if we examine [1], we find that the time of the acquisition is one of the most 

important detractors from dynamic range.  Again, this is because the longer the acquisition 

becomes, the more noise is acquired.  We find that for every ten-fold increase in acquisition 

duration, the dynamic range drops by 20 dB.  This acquisition length is uncontrollable to a large 

extent because it depends on the DUT itself. 

In [1], we find the value frac , which has been provided to introduce the concept of fractional 

portion of the waveform acquisition containing real reflections.  Wavelet denoising, in a simple 

sense can be viewed as a method whereby only the portion of the waveform containing the 

incident wave front and the reflections from the DUT are retained, while the portion of the 

acquisition containing no reflections, and therefore just noise, are discarded.  Therefore, the 

benefit of wavelet denoising can be thought of as modifying the portion of Ta  to contain only 

actual reflections.  In other words, the dynamic range is affected by the portion of the waveform 

containing reflections instead of the time needed to acquire the reflections.  Again said 

differently, the waveform is compressed into a shorter duration where that duration only contains 

actual reflections, thereby increasing dynamic range. 

Fourier-Domain Denoising 

In order to understand the concept of wavelet denoising, it is helpful to first view denoising from 

a Fourier-domain standpoint.  This is because Fourier techniques are generally well understood, 

while wavelets are not.  While Fourier techniques are not applicable to TDR, we shall see that 

the denoising concept is exactly the same with only a change in the basis functions used for the 

denoising. 

Consider Figure 1 which is shown to contain a noisy signal.  It is desirable to have a signal with 

less noise in it, so we resort to Fourier-domain techniques.  This means that we compute the 

discrete Fourier transform (DFT) and look at this signal from a frequency domain perspective.  

This is shown in Figure 2.  Figure 2 shows some interesting characteristics of the noisy signal in 

Figure 1 that we’d like to rely on: 

1. The signal consists of only a few large frequency components 

2. The noise is white 

3. The signal components are low in frequency 
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If we can truly rely on these characteristics, certain well-known techniques are possible for 

reducing noise.  Regarding item 3, an obvious technique would be to filter using a low-pass filter 

if one can guarantee that the entire signal was below a certain frequency. 
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Figure 1 – Example �oisy Waveform 
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Figure 2 – Frequency Content of Example �oisy Waveform 

Regarding item 1, a further, even more effective filtering operation is possible.  If we knew the 

frequencies and number of the components that are considered components of the signal and 

these frequencies did not change, a more complex filter that retains only the components of 

interest can make huge changes in noise content.[13] shows how this works.  [13] shows the 

relationship between the noise σ and the expected value Ea  in each bin of the DFT of the 
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acquired signal.  In [13], the value bw�  is intended to show bandwidth (i.e. is the last frequency 

of bin of interest which is the value calculated as nf  when bw�  is substituted for n  in [11], but it 

can just as well correspond to the number of frequency components actually retained in the 

signal after a particular type of denoising operation.  It is easy to show that if there is a value 

bwfrac � �= which represents the fraction of the frequency bins in the DFT of the waveform 

containing actual signal, then the improvement in signal to noise (i.e. dynamic range) in a system 

becomes: 

( )10 LogS�R frac∆ = − ⋅  

[2]  

Note that the dynamic range improvement in [2] looks remarkably similar to the effect of a value 

frac  on dynamic range in [1] – but in fact they are not the same frac .  Here we are talking 

about a fraction of the frequency spectrum as opposed to a fraction of the acquisition length in 

time.  This will become clear later. 

Regarding the implementation of a Fourier based dynamic range improvement method, there are 

two predominant considerations.  One is the knowledge of the frequency content of the signal.  If 

the frequencies are known absolutely, then all that is required is to filter the waveform.  If all of 

the frequencies of interest are at low frequencies, then a low-pass filter can be applied.  If the 

frequencies are known and simple low-pass filtering is not applicable, one can simply compute 

the DFT and zero all of the bins where signal is known not to be present and compute the inverse 

DFT.  For optimum denoising, these possibilities do not generally exist, so the next most 

important consideration is whether the noise is known and more specifically the noise shape is 

known.  By noise shape we mean the expected value of the noise in the frequency bins of the 

DFT as a function of frequency.  If the noise shape is not known, there are methods by which it 

can be calculated either with or without signal present by examining multiple waveform 

acquisitions.  If the shape is known, but the absolute level of noise is not, estimates of noise are 

easily made using locations in the spectrum where no signal is ever present.  For the purpose of 

this paper, let’s assume the latter condition.  In this situation, the noise is estimated on each 

waveform acquisition and this estimate is applied to a known noise shape to form an estimate of 

the noise in each bin of the DFT as a function of frequency.  Assuming the noise is Gaussian, 

multiplying this frequency dependent noise estimate by a factor, like 5, we form a threshold that, 

to a high degree of probability, is always above the noise.  Using such a threshold, the DFT 

spectrum is analyzed and components above the threshold are retained and components below 

the threshold are discarded.  This is a so called hard thresholding operation in that the transfer 

function of the threshold is a signum function.  In other words, if nX  represents the value of the 

DFT of the sequence kx  according to [8] and [10], and nE  is the frequency dependent expected 

value of the noise according to [10], then the denoised version of nX  is simply: 

( )sgn 5n n n nXD X Ea X= − ⋅ ⋅  

[3] 

There are other possibilities than the use of the signum function.  These are so called soft 

thresholding
2
 operations, sometimes also referred to as coefficient shrinkage.  My experience is 

that hard thresholding is simplest and works best for denoising in TDR applications, as well as 
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many others
3
.  The result of applying this denoising algorithm to the waveform in Figure 1 is 

shown in Figure 3. 
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Figure 3 – Fourier Domain Denoised Waveform 

Hard Threshold Denoising Summary 

In the last section, we looked at Fourier denoising techniques.  While Fourier techniques are not 

suitable for TDR applications, there are many similarities between these and other techniques.  In 

order to highlight these similarities, we prefer to generalize the concept of computing the DFT by 

describing this as decomposing the waveform into a set of coefficients where each coefficient 

represents a value of a basis function in the set of functions described by the decomposition.  In 

the case of Fourier methods, the DFT is such a decomposition.  Each coefficient of the DFT 

describes the complex size of a phasor or said differently, the amplitude and phase of a sinusoid.  

The coefficient index refers to the frequency of the sinusoid according to [11]. 

Therefore, the steps of denoising can be described as follows: 

1. Acquire a time-domain waveform. 

2. Decompose the waveform into the new domain for denoising. 

3. Estimate the value of the noise in each coefficient of this decomposition. 

4. Determine a threshold for each coefficient by multiplying the expected value of the noise 
in each coefficient by some value (usually 4-5). 

5. Apply this threshold in a hard thresholding operation by keeping all components above 
the threshold and zeroing the coefficients below this threshold. 

6. Compute the inverse decomposition to generate the denoised time-domain waveform. 
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The Inapplicability of Fourier Denoising to TDR 

As we have seen up to this point, Fourier denoising is simply a subset of hard threshold 

denoising in only one manner:  the choice of the basis functions for the new domain formed by 

the decomposition.  In Fourier denoising, the basis functions are sinusoids and the decomposition 

function determines amplitude and phase of these basis functions through the use of the discrete 

Fourier transform. 

The choice of decomposition method chosen such as the DFT insofar as denoising is concerned 

is based on one thing alone – the ability of the decomposition to separate signal from noise.  In 

the example we provided, the time-domain waveform contained no such capability for separation 

– each sample point of the waveform contains both signal and noise and each are 

indistinguishable.  In the example shown, the DFT was able to separate most of the noise from 

the signal.  We say most because in the frequency bins of interest where signal was located, each 

bin also contained noise, but most of the noise was spread in a manner where it was easy to 

eliminate very large amounts of noise because the actual components of interest were very small 

compared with all of the components present.  This, by the way is why denoising is always 

related to the concept of compression.  By keeping only the components of interest in the DFT, 

we compressed a very large time-domain waveform into a much smaller frequency-domain 

waveform. 

 

 

Figure 4 – TDR Waveforms Acquired for Cable Crosstalk Measurements 

Therefore, the applicability of Fourier based denoising methods depends on most of the noise 

moving to bins where there are no frequencies of interest and the number of frequencies of 

interest being small relative to the total number (i.e. frac  in [2] being small).  In TDR, this is 

simply not the case. 
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For the remainder of this paper, we will illustrate all points using an example cable far-end 

crosstalk (FEXT) measurement.  Figure 4 shows TDR and TDT traces associated with such a 

measurement.  The DUT is long cable, as shown in Figure 5 whose purpose is to transmit a 

differential signal whose positive and negative single-ended ports are on the near end, ports 1 

and 2, and on the far end, ports 3 and 4 respectively.  Therefore, the TDT trace at port 4 from a 

driven port 1 represents the AC coupled far-end crosstalk signal due to the incident wave front 

shown as the TDR trace on the driven port 1.  With such a long cable being used, we’d expect 

this crosstalk signal to be very small and because of the length we expect to acquire a long 

waveform which presents the maximum challenge in dynamic range. 

 

Figure 5 – DUT used for example 

When taking TDR based s-parameter measurements, one separates the very short incident 

portion of the TDR waveform and converts to the frequency domain representation of the 

incident using the DFT.  The remainder of the TDR waveform is converted similarly to form the 

reflect frequency domain representation.  The entire TDT waveform is converted similarly to 

form the transmitted frequency domain representation.  To form, what we call raw measured s-

parameters, the incident frequency response is divided into both the reflected and transmitted 

frequency response.  We will consider only these raw s-parameters in this paper with the 

understanding that various calibration algorithms are utilized to form true s-parameter 

measurements because the dynamic range aspect does not require this further complication. 

While many methods in TDR are utilized to avoid computing a derivative of the TDR 

waveform
4,5
, it turns out that while noise is certainly amplified by the derivative, the signal 

content is amplified similarly with no net noise increase.  In other words, since the energy in the 

incident waveform is really contained in the rising edge (i.e. the impulse formed by taking the 

derivative of the edge) and is dropping at 20 dB/decade due to the step-like nature of the 

waveform, the derivative normalizes the 20 dB/decade drop, and amplifies the noise similarly. 
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Figure 6 – Crosstalk Derivative Waveforms used in TDR 

The derivative waveform of the step-like waveform at port 4 with port 1 driven (as shown in 

Figure 4) is shown in Figure 6 where we see a localized feature with large amounts of noise in 

the remainder of the waveform. Frequency responses formed by computing the DFT of the 

incident and reflect waveform at port 1 and the thru waveform at port 4 while driven at port 1 are 

shown in Figure 7.  Here we see particularly in the raw measured S31 waveform (the crosstalk 

waveform) the large noise problem in the frequency domain. 

For this particular application we require frequency content only out to 40 GHz (we are 

computing 40 GHz s-parameters) and we realize that there might be some opportunity to apply 

Fourier domain techniques by simply filtering the data out above 40 GHz.  In this particular 

instrument, we are sampling at approximately 200 GS/s with a Nyquist rate of approximately 

100 GHz.  The waveform filtered in this manner is shown in blue in Figure 6.  Here is where we 

might fool ourselves into thinking we did something worthwhile and we might develop some 

false ideas.  In fact, although the blue waveform in Figure 6 is significantly cleaner from a time-

domain perspective, if our goal was to compute s-parameters, the noise above 40 GHz would 

have no effect anyway, and the filtering operation did nothing to solve this problem.  Another 

false idea would be to consider the shape of the noise as white and try to sample at higher sample 
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rates to spread more of the noise above 40 GHz.  In other words, if we doubled the sample rate, 

we’d move more noise into unused regions between 40 GHz and the Nyquist rate.  This would 

certainly be true if the noise were white, but remember, this would double the number of points 

in the record for a given acquisition window which would halve the acquisition speed and 

therefore halve the number of averages that could be performed on the waveform, thus nullifying 

the noise spreading effect. 

 

 

Figure 7 – Frequency Content of Crosstalk Derivative Waveforms 

 

In fact, what we see here is that Fourier domain techniques are not applicable to TDR because of 

the spread-spectrum nature of the energy in the stimulus waveform as well as the reflected and 

thru waveform responses. 

This is where wavelets come in. 



10 

What are Wavelets? 

There are many types of wavelets.  Here, we will constrain all discussion of wavelets to a 

particular, popular type called Daubechies wavelets 
6
.  This type of wavelet is an extension of the 

Haar wavelet
7
.  Daubechies wavelets are a set of wavelets that are all formed in a similar manner 

which will be shown and differ only in the number of coefficients which will also be explained.  

Thus, a particular Daubechies wavelet is described by a coefficient count (where the Haar 

wavelet is a two coefficient wavelet).  Here, we will consider wavelets whose number of 

coefficients is a power of two, wavelet transforms of time domain sequences that are a power of 

two, and like the Fourier transform, are assumed to repeat in time. 

Wavelets allow decomposition of a time domain signal into a new set of basis functions.  To 

follow this, consider that a discrete time domain representation of a signal is a set of coefficients, 

one per sample, where the coefficient value represents the size of a unit sample (or an impulse in 

continuous time).  In a wavelet domain representation, each real valued coefficient represents the 

size of a wavelet function. 

 A wavelet decomposition contains the same number of coefficients as the time-domain 

waveform, but is broken into frequency bands called scales so named because each scale 

represents an octave greater frequency content.  The scales of a wavelet transform are arranged 

such that the last scale contains for the most part the upper half of the frequency content of the 

signal, the next to last scale contains for the most part the preceding quarter of the frequency 

content, the scale before that contains for the most part the preceding eighth of the frequency 

content, etc.  The last scale contains half the total coefficients; the next to last scale contains a 

quarter, the scale before that contains an eighth, etc.  Each coefficient in each scale represents the 

size of a time-delayed wavelet function which is different for each scale, mostly in time length. 

The wavelets represented by the coefficients in the last scale are very short in time duration, 

while the wavelets represented in the first scale span the entire length of the waveform.  Thus, 

the first scale has the highest frequency resolution and the lowest time resolution, while the last 

scale has the lowest frequency resolutions and the highest time resolution.
8
 

This can be seen through an example represented in Figure 8.  Here, we show the inverse 

discrete wavelet transform (IDWT) of various unity wavelet coefficients in a 256 point wavelet 

domain waveform.  We use a four-coefficient Daubechies wavelet which is perhaps the most 

popular wavelet aside from the Haar wavelet which is most used for educational purposes.  

Because the waveform is 256 points, we know from the previous discussion that there are 128 

values possible in the last scale, 64 in the one before that, 32 in the one before that, etc. until we 

reach 8 values which are split into 4 and 4.  Thus, each scale has 4, 4, 8, 16, 32, 64, and 128 

values for the total of 256.  The scales in Figure 8 are numbered 1 through 7 for each scale.  The 

picture of scale 1 is the wavelet formed by a single unity wavelet coefficient.  For the subsequent 

scales, we show three wavelets, each formed by an adjacent unity wavelet value to the left (red) 

and to the right (blue) to a unity wavelet value centered in the middle of the scale (magenta).  

Note that the wavelets in each scale look somewhat similar, but vary greatly in time length.  For 

example, in scale 1, the wavelet spans the entire signal while in scale 7, a wavelet spans only 

four samples. 
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Figure 8 – Daubechies 4-tap wavelets 
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Decomposition of a time-domain waveform into a wavelet domain waveform is the act of 

determining the coefficient values of these wavelet functions such that when the wavelet 

functions are scaled by the coefficients and summed, the original time-domain waveform is 

formed. 

The question that must be on the top of the reader’s mind is how this is performed, which must 

start with the description of the wavelet functions themselves.  In fact, for Daubechies wavelets, 

there is no closed-form wavelet function (i.e. no non-iterative description of the wavelet 

functions) except for the wavelet in the last scale.  Instead, the wavelet functions are a side-effect 

of the mechanics used in performing the transform. 

To describe these mechanics, let’s stay with Daubechies four-coefficient wavelet.  It is described 

by a scaling filter with four coefficients ( )0.483,0.837,0.224, 0.129= −h .  The scaling filter is 

simply a low-pass filter described by these coefficients.  For example, for a Daubechies wavelet 

with coefficients h , the low-pass filter function has frequency response of [4] where f  is the 

fraction of the sample-rate and k  for each coefficient value: 

21
( , )

2

j kf

k

k

H f h e π−= ⋅∑h  

[4] 

Thus, the scaling filter response for Daubechies four-tap wavelet is shown in Figure 9.  The 

quadrature-mirror filter (QMF) that corresponds to the scaling filter is called the detail filter 

which is also shown in Figure 9.  The taps of the QMF high-pass filter are generally represented 

by the vector g . 

 

Figure 9 – Daubechies four-tap wavelet filter responses 

 

For reasons you’ll understand soon, the wavelet function shown in scale 7 of Figure 8 (and 

always the last scale of the wavelet transform) corresponds to the coefficients in h  that are 

reversed in time and whose sign is alternately changed.  In other words, if we have a K -tap 
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wavelet described by the coefficients of the scaling filterh , then the wavelet function in the last 

scale of the wavelet transform is described as wwhere 0 1k K∈ −… : 

( )1 1
k

k K kw h − −= ⋅ −  

[5] 

With the concept of the scaling filter h and detail filter g  in mind, the wavelet transform is 

computed according to the algorithm schematically shown in Figure 10, where here K  refers to 

the number of samples in the time-domain waveform, L refers to the length of the scaling filter, 

and B represents the number of scales in the result. 

x[k]   K coefficients

g(z)h(z)

22

g(z)h(z)

22

g(z)h(z)

22

L K/2K/4K/8

B-1B-2B-30

Level 1

Level 2

 

Figure 10 – Schematic Representation of Discrete Wavelet Transform 
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To compute the DWT, first, the input waveform x , a vector of K points is passed through the 

detail filter with coefficients g .  The result is decimated, or down sampled by 2 which results in 

2K  coefficients.  These are called level 1 coefficients and represent the coefficients in the last 

scale.  The input waveform is passed through the scaling filter with coefficients h  and also 

decimated by 2, which halves the number of points in the time-domain waveform presented to 

level 2.  The process is continued until the time-domain waveform is the same length as h and 

this result is placed into the first scale.  It is because of these mechanics in the computation of the 

DWT that there is no closed-form wavelet function and that the wavelet function in the last scale 

is represented by [5]. 

Properties of Wavelets 

As previously mentioned, wavelets can be thought of loosely as basis functions that describe a 

waveform.  The wavelet transform determines the coefficients applied to these basis functions.  

Wavelet transforms utilizing Daubechies wavelets, like the Fourier transform, provide 

coefficients of orthogonal functions.  Orthogonality means that the coefficients in the transform 

represent functions that are as different from each other as possible.  It also means that noise is 

not amplified moving in and out of the transform.  The DWT implemented in Figure 10 has an 

inverse IDWT process that utilizes the same analysis filters as the DWT, also similar to the 

Fourier transform.  Finally, the process is a lossless process. 

Similar to the Fourier transform, the wavelet transform offers possibilities for compression and 

therefore denoising.  This is possible because of the following items: 

1. The effect of the wavelet transform on noise and noise shapes can be understood. 

2. Thresholds can be formed that distinguish desirable wavelet coefficients from undesirable 
coefficients 

Unlike the Fourier transform, however, wavelets offer possibilities for decomposition of the 

waveform not only by frequency, but also spatially in time.  We discussed already the 

inapplicability of Fourier denoising techniques because the Fourier transform considers only 

frequency, and the TDR waveforms do not have unused frequency locations.  This being said, we 

can imagine by considering [1] and more importantly the derivation of dynamic range in 

Appendix A - Derivation of Dynamic Range that there are unused, or unimportant time locations 

in a waveform.  Since the wavelet transform separates waveforms in both time and frequency, 

while also having predictable effects on noise, it is the ideal transformation for separating TDR 

signal and noise. 

Wavelet Denoising Strategy 

The reason why we showed Fourier domain denoising strategies earlier in this paper is because 

wavelet denoising strategies are exactly analogous.  In the case of wavelet denoising of TDR, the 

DWT of the derivative waveform is computed and a threshold is determined to filter out 

statistically insignificant wavelet coefficients.  Fortunately, the statistics of noise in the wavelet 

domain are the same as in the time domain.  In other words, the standard deviation of a DWT of 

a waveform containing Gaussian noise is the same as that of the time domain waveform.  

Unfortunately, the spectral shape of the noise undergoes a complicated transformation that must 

be accounted for if the noise is not white; the derivative operation ensures that this is not the case 
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for TDR and in fact has a spectral shape shown in [18] which is approximately linear as shown in 

[19], which becomes approximately log-linear when considering the effect on wavelet scales.  

The application of the spectral noise shape to the hard threshold determination
9
 is shown in 

Figure 11.  Here, we see that the majority of coefficients in the DWT fall under the threshold 

placed at 5 standard deviations of the noise estimated from the last 30 percent of the last wavelet 

transform scale.  In fact in this example, only approximately 140 out of 65,000 coefficients are 

retained for a compression amount of 99.8%.  The computation of the IDWT of these remaining 

coefficients provides the result of the denoising operation in Figure 12 where we see that the 

noise is removed preserving the structure of the features of interest for TDR. 

 

Figure 11 – Wavelet Denoising Hard Threshold Strategy 

To see the magnitude of the time domain effect, consider Figure 13 which shows the absolute 

magnitude of the derivative waveform.  Here we see the original noise at levels of around 50 

mV/ns.  By considering only the frequency content from 0 to 40 GHz, we see that this noise was 

reduced significantly, but the result of the wavelet denoising reduced this to levels that are about 

1000 times lower.  

The effect of the wavelet denoising is seen clearer in the final goal of denoising, the raw S31 

crosstalk measurement in the frequency domain.  This is shown in Figure 14 where we see the 

crosstalk measurement significantly cleaned up in the region from 0 to 5 GHz, and the 

measurement dropping as low as -100 dB. 
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The amazing result of the frequency content of the noise removed is also shown in Figure 14, 

where we see the noise shape approximately that of the derivative effect.  Most importantly, this 

noise is removed over the entire frequency band, even underneath the low frequency area where 

there is significant signal content – something a Fourier denoising technique is simply incapable 

of. 

 

Figure 12 – Comparison of Denoised Crosstalk Derivative Waveforms 
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Figure 13 – Absolute Magnitude Comparison of Desnoised Crosstalk Waveforms 

Considerations of Results 

There are many considerations to make regarding wavelet denoising techniques.  Most of the 

considerations surround the believability of the results.  Figure 15 shows a comparison of results 

to the vector network analyzer (VNA) which is known to have higher dynamic range when 

compared to TDR instruments.  Here we had a problem in the time-domain comparison because 

the VNA data looks unbelievable for S41.  Note that we used some fixturing in the VNA 

measurement that resulted in about a 7 dB dynamic range impairment, but used a narrow 100 Hz 

IF bandwidth which caused the sweeps to take a long, but tolerable amount of time. 

Other than VNA compares, there are ways to develop some expectations on dynamic range 

improvement of wavelet denoised results.  The most important is to return to [2] where we 

consider the fractional portion of the TDR waveform containing actual reflections.  Here we 

have been considering a 250 ns TDR acquisition which is a very long acquisition.  The 

acquisition is long because the cable itself is very long.  Unless physics is being violated, we 

know that nothing can arrive out of the other end of the cable until around 38 ns.  Furthermore, 

the duration of the actual waveform portion that comes out is about 2-3 ns.  This is 2.5 out of 250 

or about 1% which leads to at least a 20 dB improvement in dynamic range if we only considered 

this 2 ns interval.  This means that regardless of believe or disbelief in the concept of wavelets, 

it’s reasonable to at least expect a 20 dB dynamic range improvement for this measurement. This 

is shown in Figure 14 where we consider this reflection “gating”. 

Another consideration regards resonant structures.  The DFT is designed to find sinusoids in 

everything as that is its decomposition basis function.  The DWT is designed to find wavelets 

and wavelet like shapes.  Since TDR is designed to find reflections and the derivative of the step-

like reflections are very wavelet-like, wavelet denoising seems like a logical method.  But TDR 

does not perform well with very narrow resonant structures, and wavelet decomposition probably 

does more to discard resonance information than to preserve it.  After all, in order to preserve it, 
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it needs to build a sequence of wavelets that would all sum to a sinusoid at the resonant 

frequency while simultaneously keeping all of these wavelets above the noise floor in the DWT.  

While this has not been studied here, it seems like an unlikely scenario.  Perhaps in future papers 

these ideas will be studied and perhaps there are hybrid techniques between wavelets and Fourier 

decomposition that are appropriate. 

Regardless of the interpretation of these remarkable results, it is clear that simulations and other 

signal-integrity related activities that surround the time-domain behavior of the measured 

frequency-domain behavior in terms of s-parameters will benefit greatly from noise removed – 

noise that is clearly present in the measurement example used.  This is clear in the S31 time 

domain measurement in Figure 15 where the wavelet denoised time-domain waveform is cleaner 

even than the VNA. 

 

Figure 14 – Frequency Content of Denoised Crosstalk Measurement with Content of Removed �oise 
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Figure 15 – Comparison of �ot Denoised (red), V�A (blue), and Wavelet Denoised TDR (black)  

Summary 

A technique was shown for denoising waveforms utilized in TDR measurements.  This technique 

was found to remove large amounts of noise in measurements and was shown to be superior to 

other denoising possibilities.  Some considerations were provided for interpreting these results.  

Further study is needed to understand the power of the results and possibly extend the methods 

presented. 
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Appendix A - Derivation of Dynamic Range 

In time-domain reflectometry, we acquire step waveforms, therefore we start with an acquired 

signal defined as follows: 

kkk sw ε+=  

[6] 

where w  is the step waveform actually acquired, s is the step portion contain the signal of 

interest, and ε is the noise signal which we assume to be white, normally distributed, 
uncorrelated noise. 

The signal content in the step is in the form of the frequency content of the derivative, so the 

derivation must consider this.  Since during calculation we don’t know the difference between 

the noise and the step, we must take the derivative of both.  We will be approximating: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
d d d d d

w t s t t s t t x t t
dt dt dt dt dt

ε ε ε= + = + = +  

[7] 

When we convert the two signals we are interested in to the frequency domain: 
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[8] 

We will calculate the dynamic range as a signal-to-noise ratio (SNR) and define this for each 

frequency as: 

n

n
n

D�

X
S�R =  

[9] 

In order to calculate the SNR, we calculate the frequency content of each of these components 

separately and take the ratio.  We start with the noise component. 

Given a noise signal ε  which contains only uncorrelated, normally distributed, white noise, it 
has a mean of 0 and a standard deviation of σ , which is the same as saying it has an root-mean-
square (rms) value of σ .  We have K points of this signal kε , 10 −∈ Kk … . 

If we calculate the discrete-Fourier-transform (DFT) of this noise signal, we obtain 

1+� frequency points 
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K
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[10] 
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where the frequencies are defined as: 

2

Fs

�

n
fn =  

[11] 

Where Fs is the sample rate. 

By the definition of the rms value and by the equivalence of noise power in the time domain and 

frequency domain, we know the following: 
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[12] 

bw� is the last frequency bin containing noise due to any band limiting of noise effects. 

We define an average value of Ea that satisfies this relationship: 
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[13] 

And therefore: 

K
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f
Ea

bw

σ
⋅=

2

1
 

[14] 

bwf  is the frequency limit for the noise calculating by substituting bw�  for n  in [11]. 

We, however, are taking the derivative of the signal.  The derivative in discrete terms is defined 

as: 

( )
Ts

dt
dt

d kk
k

1−−
=≈

εε
εε  

[15] 

Where 
Fs

Ts
1

= is the sample period.  Using the same equivalence in [12] and defining 

)( εdDFTD� = , we have: 
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Using the Z-transform equivalent of the derivative in the frequency domain, and an average 

value for the noise in D� it can be shown that: 
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[17] 

Therefore, the average noise component at each frequency is given by: 
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[18] 

We can make an approximation that allows one to gain further insight by expanding the 

numerator term in a series expansion: 
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Which allows us to approximate the noise component as: 

2
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[20] 

Now that we have the noise component of dynamic range, we move to the signal component. 

Without regard to the rise time or the frequency response of the step, which we will consider 

later, we define the signal such that, in the discrete domain, the integral of the signal forms a 

step: 

Tsxss kkk ⋅+= −1  

[21] 

x is an impulse such that FsA
Ts

A
x ⋅==0  and is zero elsewhere such that s forms a step that 

rises to amplitude A at time zero and stays there.  )(xDFTX =  and therefore the signal 

components at each frequency is defined as: 
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FsA
Ts

A
X n ⋅==  

[22] 

Again, to gain further insight, we define: 

Ta
Fs

K
TsK ==⋅  

[23] 

Where Ta is the acquisition duration.  Therefore: 

Ta

A
X n =  

[24] 

Using [9], the ratio can therefore be expressed as: 
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[25] 

Since these are voltage relationships, we can express the SNR in dB as: 
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[26] 

And using [23], finally: 
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[27] 

We would like to express the noise in dBm, so we have: 

( ) ( )220 Log 13.010 10 Log 20dBm�oise σ σ= ⋅ + = ⋅ ⋅  

[28] 

And therefore: 

20

10 10
2

dBm�oise

=σ  

[29] 

Substituting [29] in [27]: 
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[30] 

Then, to clean things up, we extract some constants: 
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And therefore: 
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[32] 

Now let's consider some other factors.  First, that there is a frequency response of the pulse, and 

a frequency response of the sampler.  These responses can be aggregated into a single response.  

Since, in decibels, it is simply the frequency response of the step calculated by taking the DFT of 

the derivative of the step (isolating only the sampled incident waveform) and calculating in dB, 

this value can simply be added to the dynamic range: 

( )
2

2

2
10 Log 6bw

n dBm

A f
S�R �oise P f

Ta f

 ⋅ ⋅
= ⋅ − + − ⋅ 

 

[33] 

Next, we consider the effects of averaging.  Averaging the waveform achieves a 3 dB reduction 

in noise with every doubling of the number of averages.  This leads to an improvement of 

dynamic range by: 

( ) ( )avgavg Log10Log20 ⋅=⋅  

[34] 

Which allows us to insert this directly into the numerator: 

( )
2

2

2
10 Log 6bw

n dBm

A f avg
S�R �oise P f

Ta f

 ⋅ ⋅ ⋅
= ⋅ − + − ⋅ 

 

[35] 

We really don’t want to consider dynamic range in terms of number of averages and instead to 

prefer to consider the amount of time we are willing to wait.  The amount of averages taken in a 

given amount of time is given by: 

T
FsTa

Fs
avg

eq

act ⋅
⋅

=  

[36] 
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In [36], we now need to distinguish what is meant by sample rate.  eqFs becomes the equivalent 

time sample rate and replaces what we previously called Fs .  actFs  is the actual sample rate of 

the system and T is the amount of time over which acquisitions are taken.  Substituting [36] in 

[35], we obtain: 

( )
2

2 2

2
10 Log 6bw act

n dBm

eq

A f Fs T
S�R �oise P f

Ta f Fs

 ⋅ ⋅ ⋅ ⋅
= ⋅ − + −  ⋅ ⋅ 

 

[37] 

Next, we consider the losses in the cabling and fixturing between the pulser/sampler and the 

device-under-test (DUT).  Where ( )F f and ( )C f are the loss in the fixturing and cabling as a 

function of frequency respectively, the equation for dynamic range becomes: 

( ) ( ) ( )
2

2 2

2
10 Log 2 ( ) ( ) 6bw act

dBm

eq

A f Fs T
S�R f �oise P f C f F f

Ta f Fs

 ⋅ ⋅ ⋅ ⋅
= ⋅ − + + ⋅ + −  ⋅ ⋅ 

 

[38] 

considering the fact that the signal must pass through the cabling and fixturing twice. 

There is one final consideration.  That is the effect of denoising algorithms.  Denoising 

algorithms have the effect of removing broadband noise from the acquisition primarily through 

means of detecting where uncorrelated noise is present in the signal in time.  It is difficult to 

quantify these effects, but a conservative method considers the fact that the primary noise 

reduction occurs where there are no reflections.  In other words, if we look at a denoised 

waveform, the primary effect is to remove the noise in the locations in the waveform devoid of 

reflections.  The effect on noise, again conservatively speaking, is to retain only the portion of 

the waveform that contains reflections.  Here, we will assume that the noise remains in these 

portions.  Thinking this way, we can define a variable frac that contains the fractional portion of 

the acquisition that actually contains reflections relative to the portion that does not.  This value 

is DUT dependent and modifies the acquisition duration Ta .  Of course, 1=frac  is used when 

denoising is not employed: 

 

( ) ( ) ( )
2

2 2

2
10 Log 2 ( ) ( ) 6bw act

dBm

eq

A f Fs T
S�R f �oise P f C f F f

Ta frac f Fs

 ⋅ ⋅ ⋅ ⋅
= ⋅ − + + ⋅ + −  ⋅ ⋅ ⋅ 

 

[39] – Dynamic Range Equation 

 

************************************* 
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